Skip to main content
Log in

Trioecy in Flowering Plants

  • Published:
Doklady Biological Sciences Aims and scope Submit manuscript

Abstract

Populations of trioecious plants consists of individuals with staminate, pistillate, and hermaphrodite flowers. Trioecy is extremely rare in angiosperms, and relevant data are scarce. A list of trioecious plants found in the global flora was compiled on the basis of literature data and original research. The list includes 80 species of 46 genera, which represent 33 families and 21 orders of flowering plants. Trioecy is found in 7.9% of families, 0.3% of genera, and 0.03% of species in angiosperms. Trioecious species are now unknown in basal angiosperms, uncommon in magnoliids, and rather rare in monocots. The overwhelming majority (87.5%) of trioecious plants belong to Superrosids (30 species) and Superasterids (40 species). The greatest numbers of trioecious species are found in the families Rosaceae (nine species of two genera), Caprifoliaceae (seven species of one genus), Scrophulariaceae (seven species of one genus), Caryophyllaceae (six species of two genera), and Celastraceae (six species of two genera). Almost half of the identified trioecious species represent five genera: Fragaria L. (eight species), Valeriana L. (seven species), Buddleja L. (seven species), Maytenus Molina (five species), and Silene L. (five species). An association with trioecy was analyzed for several biological and ecological factors, such as the life form, the method of pollination, the perianth color, the pericarp consistency, the presence of related dioecious species in the same genus, the latitudinal position, and the distribution through floristic phytochoria. A lability of sex differentiation in certain trioecious plants, the proportion of sex forms in a population, a possible association with polyploidy, and mechanisms of trioecy maintenance and evolution in flowering plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Akemine, T., On the sex expression of Coptis japonica Makino, J. Fac. Sci. Hokkaido Imp. Univ., 1935, vol. 5, no. 1, pp. 1–7.

    Google Scholar 

  2. Albert, B., Morand-Prieur, M.-É., Brachet, S., Gouyon, P.-H., Frascaria-Lacoste, N., and Raquin, C., Sex expression and reproductive biology in a tree species, Fraxinus excelsior L., Compt. R. Biol., 2013, vol. 336, no. 10, pp. 479–485.

    Article  Google Scholar 

  3. Anmol Singh, S.K., Species diversity and genetic evolution in Fragaria, in Advances in Horticultural Crop Management and Value Addition, 2019, pp. 75–89.

  4. Armoza-Zvuloni, R., Kramarsky-Winter, E., Loya, Y., Schlesinger, A., and Rosenfeld, H., Trioecy, a unique breeding strategy in the sea anemone Aiptasia diaphana and its association with sex steroids, Biol. Reprod., 2014, vol. 90, no. 6, pp. 1–8.

    Article  Google Scholar 

  5. Ashman, T.-L., Kwok, A., and Husband, B.C., Revisiting the dioecy–polyploidy association: Alternate pathways and research opportunities, Cytogenet. Genome Res., 2013, vol. 140, nos. 2–4, pp. 241–255.

    Article  PubMed  Google Scholar 

  6. Atalano, J.M. and Molau, U., Pollen viability and limitation of seed production in a population of the circumpolar cushion plant, Silene acaulis (Caryophyllaceae), Nord. J. Bot., 2001, vol. 21, no. 4, pp. 365–372.

    Article  Google Scholar 

  7. Baker, H.G., Some functions of dioecy in seed plants, Am. Nat., 1984, vol. 124, no. 2, pp. 149–158.

    Article  Google Scholar 

  8. Banziger, H. and Bertel, H., A new taxonomic revision of a deceptive flower, Rhizanthes Dumortier (Rafflesiaceae), Nat. Hist. Bull. Siam Soc., 2000, vol. 48, no. 1, pp. 117–143.

    Google Scholar 

  9. Barroso, G.M., Baccharidiopsis—um gênero novo da subtribo Baccharidinae Hoffmann (tribo Astereae), Sellowia, 1975, vol. 27, no. 26, pp. 95–101.

    Google Scholar 

  10. Bobrov, A.V., Melikian, A.P., and Romanov, M.S., Morphogenesis of Fruits of Magnoliophyta, Moscow, 2009.

    Google Scholar 

  11. Brizicky, G.K., The genera of Vitaceae in the southeastern United States, J. Arnold Arbor., 1965, vol. 46, no. 1, pp. 48–67.

    Article  Google Scholar 

  12. Castillo, R.F. and Argueta, S.T., Reproductive implications of combined and separate sexes in a trioecious population of Opuntia robusta (Cactaceae), Am. J. Bot., 2009, vol. 96, no. 6, pp. 1148–1158.

    Article  PubMed  Google Scholar 

  13. Cook, C.D.K., Symoens, J.-J., and Urmi-König, K., A revision of the genus Ottelia (Hydrocharitaceae) I. Generic considerations, Aquat. Bot., 1984, vol. 18, no. 3, pp. 263–274.

    Article  Google Scholar 

  14. Cruden, R.W. and Lloyd, R.M., Embryophytes have equivalent sexual phenotypes and breeding systems: why not a common terminology to describe them?, Am. J. Bot., 1995, vol. 82, no. 6, pp. 816–825.

    Article  Google Scholar 

  15. Cutter, A.D., Mutation and the experimental evolution of outcrossing in Caenorhabditis elegans, J. Evol. Biol., 2005, vol. 18, no. 1, pp. 27–34.

    Article  CAS  PubMed  Google Scholar 

  16. Darwin, C., The Different Forms of Flowers on Plants of the Same Species, London, 1877.

    Book  Google Scholar 

  17. Demissew, S., The genus Maytenus (Celastraceae) in NE tropical Africa and tropical Arabia, Acta Univ. Ups., Symb. Bot. Ups., 1985, vol. 25, no. 2, pp. 1–101.

    Google Scholar 

  18. Demyanova, E.I., The Spectrum of sexual types and forms in the local floras of the Urals (Cis- And Trans-Urals), Bot. Zh., 2011, vol. 96, no. 10, pp. 1297–1315. https://doi.org/10.1134/S1234567811100016

    Google Scholar 

  19. Ehlers, B.K. and Bataillon, T., “Inconstant males” and the maintenance of labile sex expression in subdioecious plants, New Phytol., 2007, vol. 174, no. 1, pp. 194–211.

    Article  PubMed  Google Scholar 

  20. Elumeev, E.A., Opening and blooming of flowers Eleutherococcus senticosus (Araliaceae), Bot. Zh., 1978, vol. 63, no. 1, pp. 52–59.

    Google Scholar 

  21. Engler, A. and Krause, K., Loranthaceae, in Die Natürlichen Planzenfamilien, Leipzig, 1935, vol. 16b, pp. 98–203.

  22. FitzJohn, R.G., Pennell, M.W., Zanne, A.E., Stevens, P.F., Tank, D.C., and Cornwell, W.K., How much of the world is woody?, J. Ecol., 2014, vol. 102, no. 5, pp. 1266–1272.

    Article  Google Scholar 

  23. Fleming, T.H., Fruiting plant-frugivore mutualism: the evolutionary theater and the ecological play, in Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions, New York, 1991, pp. 119–144.

    Google Scholar 

  24. Fleming, T.H., Maurice, S., Buchmann, S.L., and Tuttle, M.D., Reproductive biology and relative male and female fitness in a trioecious cactus, Pachycereus pringlei (Cactaceae), Am. J. Bot., 1994, vol. 81, no. 7, pp. 858–867.

    Article  Google Scholar 

  25. Fleming, T.H., Maurice, S., and Hamrick, J.L., Geographic variation in the breeding system and the evolutionary stability of trioecy in Pachycereus pringlei (Cactaceae), Evol. Ecol., 1998, vol. 12, no. 3, pp. 279–289.

    Article  Google Scholar 

  26. Fox, J., Incidence of dioecy in relation to growth form, pollination and dispersal, Oecologia, 1985, vol. 67, no. 2, pp. 244–249.

    Article  CAS  PubMed  Google Scholar 

  27. French, K., Characteristics and abundance of vertebrate-dispersed fruits in temperate wet sclerophyll forest in southeastern Australia, Aust. J. Ecol., 1991, vol. 16, no. 1, pp. 1–13.

    Article  Google Scholar 

  28. Frodin, D.G., Guide to Standard Floras of the World. An annotated, Geographically Arranged Systematic Bibliography of the Principal Floras, Enumerations, Checklists, and Chorological Atlases of Different Areas, Cambridge: Cambridge Univ. Press, 2001.

    Google Scholar 

  29. Giussani, L.M., Gillespie, L.J., Scataglini, M.A., Negritto, M.A., Anton, A.M., and Soreng, R.J., Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae), Ann. Bot., 2016, vol. 118, no. 2, pp. 281–303.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gleiser, G. and Verdú, M., Repeated evolution of dioecy from androdioecy in Acer, New Phytol., 2005, vol. 165, no. 2, pp. 633–640.

    Article  PubMed  Google Scholar 

  31. Glick, L., Sabath, N., Ashman, T.-L., Goldberg, E., and Mayrose, I., Polyploidy and sexual system in angiosperms: Is there an association?, Am. J. Bot., 2016, vol. 103, no. 7, pp. 1223–1235.

    Article  PubMed  Google Scholar 

  32. Godin, V.N., Sexual structure of coenopopulations of Pentaphylloides fruticosa (L.) O. Schwarz in natural conditions of Mountain Altai, Bot. Zh., 2002, vol. 87, no. 9, pp. 92–98.

    Google Scholar 

  33. Godin, V.N., Biological characters of Pentaphylloides fruticosa (Rosaceae) pollen in the context of sex differentiation, Bot. Zh., 2004, vol. 89, no. 4, pp. 631–638. https://doi.org/10.1134/S000681360404009X

    Google Scholar 

  34. Godin, V.N., Sex differentiation in plants, terms and notions, Zh. Obshch. Biol., 2007, vol. 68, no. 2, pp. 98–108.

    CAS  PubMed  Google Scholar 

  35. Godin, V.N., Sexual structure of Potentilla fruticosa (Rosaceae) coenopopulations in the Altay-Sayan Mountain region, Bot. Zh., 2008, vol. 93, no. 9, pp. 1423–1444. https://doi.org/10.1134/S1234567808090073

    Google Scholar 

  36. Godin, V.N., Sexual forms and their ecological correlates of flowering plants in Siberia, Russ. J. Ecol., 2017, vol. 48, no. 5, pp. 433–439.

    Article  Google Scholar 

  37. Godin, V.N., Distribution of gynodioecy in APG IV system, Bot. Zh., 2019, vol. 104, no. 5, pp. 669–683. https://doi.org/10.1134/S0006813619050053

    Google Scholar 

  38. Godin, V.N., Distribution of gynodioecy in flowering plants, Bot. Zh., 2020, vol. 105, no. 3, pp. 236–252. https://doi.org/10.31857/S0006813620030023

    Google Scholar 

  39. Godley, E.J., Breeding systems in New Zealand Plants, I, Fuchsia, Ann. Bot., 1955, vol. 19, no. 4, pp. 549–559.

    Article  Google Scholar 

  40. Gschwend, A.R., Wai, C.M., Zee, F., Arumugana-than, A.K., and Ming, R., Genome size variation among sex types in dioecious and trioecious Caricaceae species, Euphytica, 2012, vol. 189, no. 3, pp. 461–469.

    Article  Google Scholar 

  41. Hummer, K.E., A new species of Fragaria (Rosaceae) from Oregon, J. Bot. Res. Inst. Texas, 2012, vol. 6, no. 1, pp. 9–15.

    Google Scholar 

  42. Ishmuratova, M.M., Rhodiola iremelica (Crassulaceae) in the Southern Urals, Bot. Zh., 2002, vol. 87, no. 5, pp. 38–50.

    Google Scholar 

  43. Joseph, K.S. and Murthy, H.N., Sexual system of Garcinia indica Choisy: geographic variation in trioecy and sexual dimorphism in floral traits, Plant Syst. Evol., 2015, vol. 301, no. 3, pp. 1065–1071.

    Article  Google Scholar 

  44. Kaliszewicz, A., Interference of asexual and sexual reproduction in the green hydra, Ecol. Res., 2011, vol. 26, no. 1, pp. 147–152.

    Article  Google Scholar 

  45. Kier, G., Mutke, J., Dinerstein, E., Ricketts, T.H., Küper, W., Kreft, H., and Barthlott, W., Global patterns of plant diversity and floristic knowledge, J. Biogeogr., 2005, vol. 32, no. 7, pp. 1107–1116.

    Article  Google Scholar 

  46. Klackenberg, J., The holarctic complex Potentilla fruticosa (Rosaceae), Nord. J. Bot., 1983, vol. 3, no. 2, pp. 181–191.

    Article  Google Scholar 

  47. Knuth, P., Handbuch der Blütenbiologie, Leipzig, Bd. II, Teil I, 1898.

  48. Knuth, P., Handbuch der Blütenbiologie, Leipzig, Bd. II, Teil II, 1899.

  49. Knuth, P., Handbuch der Blütenbiologie, Leipzig, Bd. III, Teil I, 1904.

  50. Kutschker, A., Revisión del género Valeriana (Valerianaceae) en Sudamérica austral, Gayana Bot., 2011, vol. 68, no. 2, pp. 244–296. https://doi.org/10.4067/S0717-66432011000200016

    Article  Google Scholar 

  51. Ladley, J.J., Kelly, D., and Robertson, A.W., Explosive flowering, nectar production, breeding systems, and pollinators of New Zealand mistletoes (Loranthaceae), N. Z. J. Bot., 1997, vol. 35, no. 3, pp. 345–360.

    Article  Google Scholar 

  52. Linnæi, C., Systema naturæ, sive regna tria naturæ systematice proposita per classes, ordines, genera, and species, Lugduni Batavorum, 1735.

    Google Scholar 

  53. Liston, A., Cronn, R., and Ashman, T., Fragaria: A genus with deep historical roots and ripe for evolutionary and ecological insights, Am. J. Bot., 2014, vol. 101, no. 10, pp. 1686–1699.

    Article  PubMed  Google Scholar 

  54. Loock, E.E.M., The carob or locust tree (Ceratonia siliqua L.), J. S. Afr. For. Ass., 1940, vol. 4, no. 1, pp. 78–80.

    Google Scholar 

  55. Maurice, S., Belhassen, E., Couvet, D., and Gouyon, P., Evolution of dioecy: Can nuclear-cytoplasmic interactions select for maleness?, Heredity, 1994, vol. 73, no. 4, pp. 346–354.

    Article  PubMed  Google Scholar 

  56. Maurice, S. and Fleming, T., The effect of pollen limitation on plant reproductive systems and the maintenance of sexual polymorphisms, Oikos, 1995, vol. 74, no. 1, pp. 55–60.

    Article  Google Scholar 

  57. Mirski, P. and Brzosko, E., Are hermaphrodites better adapted to the colonization process in trioecious populations of Salix myrsinifolia?, Acta Soc. Bot. Pol., 2015, vol. 84, no. 2, pp. 167–175.

    Article  Google Scholar 

  58. Morris, W.F. and Doak, D.F., Life history of the long-lived gynodioecious cushion plant Silene acaulis (Caryophyllaceae), inferred from size-based population projection matrices, Am. J. Bot., 1998, vol. 85, no. 6, pp. 784–793.

    Article  CAS  PubMed  Google Scholar 

  59. Neefus, C.D., Mathieson, A.C., Bray, T.L., and Yarish, C., The distribution, morphology, and ecology of three introduced asiatic species of Porphyra (Bangiales, Rhodophyta) in the northwestern Atlantic, J. Phycol., 2008, vol. 44, no. 6, pp. 1399–1414.

    Article  PubMed  Google Scholar 

  60. Nianhe, X. and Gilbert, M.G., Santalaceae, in Flora of China, 2003, vol. 5, pp. 208–219.

  61. Norman, E.M., Buddlejaceae, in Flora Neotropica Monograph, New York, 2000, vol. 81.

  62. Novara, L., Valerianaceae, Aportes Botanicos de Salta, Serie Flora, 2008, vol. 8, no. 8, pp. 1–22.

    Google Scholar 

  63. Ollerton, J., Johnson, S., and Hingston, A., Geographical variation in diversity and specificity of pollination systems, in Plant–Pollinator Interactions: From Specialization to Generalization, Univ. Chicago Press, 2006, pp. 283–308.

  64. Ollerton, J., Winfree, R., and Tarrant, S., How many flowering plants are pollinated by animals?, Oikos, 2011, vol. 120, no. 3, pp. 321–326.

    Article  Google Scholar 

  65. Palací, C.A., A systematic revision of the genus Catopsis (Bromeliaceae), PhD Dissertation, Laramie: Wyoming Univ., 1997.

  66. Perrier de la Bathie, H., Anacardiaceae, in Flore de Madagascar et des Comores. Tananarive, 1946, pp. 1–85.

    Google Scholar 

  67. Perry, L.E., Pannell, J.R., and Dorken, M.E., Two’s company, three’s a crowd: experimental evaluation of the evolutionary maintenance of trioecy in Mercurialis annua (Euphorbiaceae), PLoS One, 2012, vol. 7, no. 4, p. e35597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pervukhina, N.V., Perianth of Angiosperms, Leningrad, 1979.

    Google Scholar 

  69. Quisumbing, E., Philippine Piperaceae, Philipp. J. Sci., 1930, vol. 43, no. 1, pp. 1–246.

    Google Scholar 

  70. Raunkiær, C., The Life Forms of Plants and Statistical Plant Geography, Oxford, 1934.

    Google Scholar 

  71. Rebman, J.P., The genus Echinocereus in Lower California, Mexico—taxonomy, rarity and reproductive biology, Cact. Succ. J. Am., 2003, vol. 75, pp. 194–196.

    Google Scholar 

  72. Rejmánek, M., Invasion of Rubus praecox (Rosaceae) is promoted by the native tree Aristotelia chilensis (Elaeocarpaceae) due to seed dispersal facilitation, Gayana Bot., 2015, vol. 72, no. 1, pp. 27–33.

    Article  Google Scholar 

  73. Renner, S.S., The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database, Am. J. Bot., 2014, vol. 101, no. 10, pp. 1588–1596.

    Article  PubMed  Google Scholar 

  74. Richards, A.J., Plant Breeding Systems, Springer-Verlag, 1997.

    Book  Google Scholar 

  75. Rosado, A., Vera-Velez, R., and Cota-Sanchez, J.H., Floral morphology and reproductive biology in selected maple (Acer L.) species (Sapindaceae), Braz. J. Bot., 2018, vol. 41, no. 2, pp. 361–374.

    Article  Google Scholar 

  76. Rübsamen-Weustenfeld, T., Morphologische, embryologische, und systematische Untersuchungen an Triuridaceae, Bibl. Bot., 1991, vol. 140, pp. 1–113.

    Google Scholar 

  77. Serebryakov, I.G., Ecological Morphology of Plants, Moscow, 1962.

    Google Scholar 

  78. Shamsutdinova, E.Z., Biology of flowering, diversity of sexual types and seed production in Salsola orientalis S.G. Gmel, Agric. Biol., 2016, vol. 51, no. 6, pp. 951–960. https://doi.org/10.15389/agrobiology.2016.6.951rus

    Google Scholar 

  79. Silva, C.A., Oliva, M.A., Vieira, M.F., and Fernan-des, G.W., Trioecy in Coccoloba cereifera Schwacke (Polygonaceae), a narrow endemic and threatened tropical species, Braz. Arch. Biol. Technol., 2008, vol. 51, no. 5, pp. 1003–1010.

    Article  Google Scholar 

  80. Sokal, R.R. and Rohlf, F.J., Biometry: the Principles and Practice of Statistics in Biological Research, New York, 2012.

    Google Scholar 

  81. Soreng, R. and Peterson, P.M., Revision of Poa L. (Poaceae, Pooideae, Poeae, Poinae) in Mexico: new records, re-evaluation of P. ruprechtii, and two new species, P. palmeri and P. wendtii, PhytoKeys, 2012, vol. 15, no. 15, pp. 1–104.

    Article  Google Scholar 

  82. Soriano, A.M., Salazar, G.A., and Dávila, P.D., Phylogenetic relationships in Zeugites (Poaceae: Centothecoideae) inferred from plastid and nuclear DNA sequences and morphology, Syst. Bot., 2007, vol. 32, no. 4, pp. 722–730. https://doi.org/10.1043/06-75.1

    Article  Google Scholar 

  83. Staudt, G., Die Genetik und Evolution der Heterözie in der Gattung Fragaria. I. Untersuchungen an Fragaria orientalis, Z. Pflanzenzuchtung, 1967, vol. 58, no. 3, pp. 245–277.

    Google Scholar 

  84. Storey, W.B., Genetics of papay, J. Hered., 1953, vol. 44, no. 2, pp. 70–78.

    Article  Google Scholar 

  85. Sultangaziev, O., Schueler, S., and Geburek, T., Morphometric traits and sexual dimorphisms do not strongly differentiate populations of Zeravshan juniper (Juniperus seravschanica Kom.) in Kyrgyzstan, Flora, 2010, vol. 205, no. 8, pp. 532–539.

    Article  Google Scholar 

  86. Takhtajan, A.L., The Floristic Regions of the World, Berkeley: UC Press, 1986.

    Google Scholar 

  87. Tandon, R., Shivanna, K.R., and Mohan Ram, H.Y., Reproductive biology of some gum-producing Indian desert plants, in Desert Plants, Springer-Verlag, 2010, pp. 177–195.

    Google Scholar 

  88. Tseng, Y.-H., Hsieh, C.-F., and Hu, J.-M., Incidences and ecological correlates of dioecious angiosperms in Taiwan and its outlying Orchid Island, Bot. Stud., 2008, vol. 49, no. 3, pp. 261–276.

    Google Scholar 

  89. Vary, L.B., Gillen, D.L., Randrianjanahary, M., Lowry II, P.P., Sakai, A.K., and Weller, S.G., Dioecy, monoecy, and their ecological correlates in the littoral forest of Madagascar, Biotropica, 2011, vol. 43, no. 5, pp. 582–590.

    Article  Google Scholar 

  90. Vitale, J.J. and Freeman, D.C., Partial niche separation in Spinacia oleracea L.: an examination of reproductive allocation, Evolution, 1986, vol. 40, no. 2, pp. 426–430.

    Article  PubMed  Google Scholar 

  91. Warfa, A.M., Cordia (Boraginaceae) in NE Tropical Africa and Tropical Arabia, Acta Univ. Ups., 1988.

  92. Warming, M.E., Sur la structure et le procédé présumé de pollination chez quelques fleurs groenlandaises, Bulletin de l’Académie royale des sciences et des lettres de Danemark, 1886, pp. 25–33.

  93. Weberling, F. and Stützel, Th., Morphological and anatomical investigations of Aretiastrum magellanicum (Hombr. and Jacq.) Skottsb., Wulfenia, 2006, vol. 13, pp. 193–205.

    Google Scholar 

  94. Willson, M.F., Irvine, A.K., and Walsh, N.G., Vertebrate dispersal syndromes in some Australian and New Zealand plant communities, with geographic comparisons, Biotropica, 1989, vol. 21, no. 2, pp. 133–147.

    Article  Google Scholar 

  95. Xia, F., Cheng, F., Liu, Z., Lin, L., Wang, H., and Wang, G., Sexual system and ecological links of flowering plants in Changbai Mountain, Russ. J. Ecol., 2020, vol. 51, no. 4, pp. 345–350.

    Article  Google Scholar 

  96. Zenil-Ferguson, R., Burleigh, J.G., Freyman, W.A., Igić, B., Mayrose, I., and Goldberg, E.E., Interaction among ploidy, breeding system and lineage diversification, New Phytol., 2019, vol. 224, no. 3, pp. 1252–1265.

    Article  PubMed  Google Scholar 

  97. Yampolsky, C. and Yampolsky, H., Distribution of sex forms in the phanerogamic flora, Bibl. Genet., 1922, vol. 3, pp. 1–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Godin.

Ethics declarations

Conflict of interests. The author declares that he has no conflicts of interest.

This article does not contain any studies involving animals or human subjects performed by the author.

Additional information

In memoriam Evgeniya Ivanovna Demyanova (1936–2020), my teacher in the field of plant sexual polymorphism

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godin, V.N. Trioecy in Flowering Plants. Dokl Biol Sci 507, 301–311 (2022). https://doi.org/10.1134/S0012496622060023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012496622060023

Keywords:

Navigation