Skip to main content
Log in

Selenium Nanocomposites Having Polysaccharid Matrices Stimulate Growth of Potato Plants in Vitro Infected with Ring Rot Pathogen

  • GENERAL BIOLOGY
  • Published:
Doklady Biological Sciences Aims and scope Submit manuscript

Abstract

The influence of nanocomposites (NC) of selenium in matrices of arabinogalactan (Se/AG) and starch (Se/St) on in vitro vegetation of potato plants, peroxidase activity, and reactive oxygen species has been thoroughly studied. It has been shown that these nanocomposites of selenium have antimicrobial effect to the phytopathogenic bacterium Clavibacter michiganensis ssp. sepedonicus (Cms). In the present investigation, it has been shown that Se/AG NC (6.4% of Se) and Se/St NC (12.0% of Se) have no negative impact on the potato plants healthy and Cms infected, while stimulating their growth, number of leaves and weight of the vegetative part. Se/AG NC has shown a positive effect on potato plants by increasing its immune status by increasing the ROS content and increasing the peroxidase activity. With the use of the element analysis technique, it has been shown that scrutinized nanocomposites are not accumulated in potato plants after the bactericidal processing with the nanocomposites. Se/AG NC and Se/St NC as potential agents used for treatment of potato plants against pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Prasad, R., Bhattacharyya, A., and Nguyen, Q.D., Front Microbiol., 2017, vol. 20, no. 8, p. 1014.

    Article  Google Scholar 

  2. Shkil’, N.N., Shkil’, N.A., Burmistrov, V.A., and Yukhin, Yu.M., Sib. Vestn. S.-Khoz. Nauki, 2017, vol. 47, no. 2, pp. 85–90.

    Google Scholar 

  3. Raliya, R., Saharan, V., Dimkpa, C., and Biswas, P., J.  Agric. Food Chem., 2018, vol. 5, no. 66 (26), pp. 6487–6503.

  4. He, X., Deng, H., and Hwang, H.M., J. Food Drug Anal., 2019, vol. 27, no. 1, pp. 1–21.

    Article  CAS  Google Scholar 

  5. Perfileva, A.I., Nozhkina, O.A., Graskova, I.A., Sidorov, A.V., Lesnichaya, M.V., Aleksandrova, G.P., Dolmaa, G., Klimenkov, I.V., and Sukhov, B.G., Russ. Chem. Bull., 2018, vol. 67, no. 1, pp. 157–163. https://doi.org/10.1007/s11172-018-2052-4

    Article  CAS  Google Scholar 

  6. Papkina, A.V., Perfil’eva, A.I., Zhivet’ev, M.A., Borovskii, G.B., Graskova, I.A., Lesnichaya, M.V., Klimenkov, I.V., Sukhov, B.G., and Trofimov, B.A., Dokl. Biol. Sci., 2015, vol. 461, no. 2, pp. 89–91. https://doi.org/10.7868/S0869565215030305

    Article  CAS  PubMed  Google Scholar 

  7. Perfileva, A.I., Moty’leva, S.M., Klimenkov, I.V., Graskova, I.A., Skhov, B.G., and Trofimov, B.A., Nanotechnol. Russ., 2017, vol. 12, nos. 9–10, pp. 553–558.

    Article  CAS  Google Scholar 

  8. Papkina, A.V., Perfileva, A.I., Zhivet’yev, M.A., Borovskii, G.B., Graskova, I.A., Klimenkov, I.V., Lesnichaya, M.V., Sukhov, B.G., and Trofimov, B.A., Nanotechnol. Russ., 2015, vol. 10, nos. 5–6, pp. 484–491.

    Article  CAS  Google Scholar 

  9. Karpova, E.A., Sukhov, B.G., Kolesnikova, L.I., Vlasov, B.Ya., Il’ina, O.P., Artem’ev, A.V., Lesnichaya, M.V., Pogodaeva, N.N., Saivanova, S.A., Kuznetsov, S.V., and Trofimov, B.A., RF Patent 2557992, 2013.

  10. Roozen, N.J.M. and van Vuurde, J.W.L., Neth. J. Plant Pathol., 1991, vol. 97, no. 5, pp. 321–334.

    Article  Google Scholar 

  11. Nechitailo, G.S., Bogoslovskaya, O.A., Ol’khovskaya, I.P., and Glushchenko, N.N., Ross. Nanotekhnol., 2018, vol. 13, nos. 3–4, pp. 57–63.

    Google Scholar 

  12. Dubrovina, V.I., Medvedeva, S.A., Vityazeva, S.A., Kolesnikova, O.B., Aleksandrova, G.P., Gutsol, L.O., Grishchenko, L.A., and Chetveryakova, T.D., Struktura i immunomoduliruyushchee deistvie arabinogalaktana listvennitsy sibirskoi i ego metalloproizvodnykh (Structure and Immunomodulatory Activity of Arabinogalactan of Siberian Larch and Its Metal Derivatives), Irkutsk, 2007.

    Google Scholar 

  13. Suzuki, N., Koussevitzky, S., Mittler, R., and Miller, G., Plant Cell Environ., 2012, vol. 35, no. 2, pp. 259–270.

    Article  CAS  Google Scholar 

  14. Choudhury, F.K., Rivero, R.M., Blumwald, E., and Mittler, R., Plant J., 2017, vol. 90, no. 5, pp. 856–867.

    Article  CAS  Google Scholar 

  15. Liebthal, M. and Dietz, K.J., Methods Mol. Biol., 2017, vol. 1631, pp. 23–39. https://doi.org/10.1007/978-1-4939-7136-7_2

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Our investigation has been conducted with the use of equipment of the Bioresourse Center, Siberian Branch, Russian Academy of Sciences.

Funding

This investigation has been supported by the grant of President of Russian Federation for Young Post-Graduate Scientists, no. МК-1220.2019.11, by the Russian Foundation for Basic Research, and Government of Irkutsk oblast, grant no. 17-416-380001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Perfileva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by N. Smirnov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perfileva, A.I., Nozhkina, O.A., Graskova, I.A. et al. Selenium Nanocomposites Having Polysaccharid Matrices Stimulate Growth of Potato Plants in Vitro Infected with Ring Rot Pathogen. Dokl Biol Sci 489, 184–188 (2019). https://doi.org/10.1134/S0012496619060073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012496619060073

Navigation