Skip to main content
Log in

On the Optimality Conditions in the Weight Minimization Problem for a Shell of Revolution at a Given Vibration Frequency

  • CONTROL THEORY
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider shallow elastic shells with a given circular boundary and seek an axisymmetric shell shape minimizing the weight at a given fundamental frequency of shell vibrations. Using the resulting formula for the linear part of the increment of the frequency functional, the multiplicity of the minimum natural frequency of vibrations of the shell is estimated. The Fréchet differentiability of the frequency functional is also established, and optimal conditions for minimizing the weight of the shell at a given fundamental vibration frequency are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Lagrange, J.L., Sur la figure des colonnes, Miscellanea Taurinensia, 1770–1773, vol. 5.

  2. Arabyan, M.H., Boundary-value problems and associated eigen-value problems for systems describing vibrations of a rotation shell, New York J. Math., 2019, vol. 25, pp. 1350–1367.

    MathSciNet  MATH  Google Scholar 

  3. Plaut, R.H., Johnson, L.W., and Parbery, R., Optimal forms of shallow shells with circular boundary. Part 1. Maximum fundamental frequency, ASME J. Appl. Mech., 1984, vol. 51, no. 3, pp. 526–530.

    Article  MATH  Google Scholar 

  4. Plaut, R.H. and Johnson, L.W., Optimal forms of shallow shells with circular boundary. Part 2. Maximum buckling load, ASME J. Appl. Mech., 1984, vol. 51, no. 3, pp. 531–535.

    Article  MATH  Google Scholar 

  5. Plaut, R.H. and Johnson, L.W., Optimal forms of shallow shells with circular boundary. Part 3. Maximum enclosed volume, ASME J. Appl. Mech., 1984, vol. 51, no. 3, pp. 536–539.

    Article  MATH  Google Scholar 

  6. Abdulla, U.G., Cosgrove, E., and Goldfarb, J., On the Fréchet differentiability in optimal control of coefficients in parabolic free boundary problems, Evol. Equat. Control Theory, 2017, vol. 6, no. 3, pp. 319–344.

    Article  MATH  Google Scholar 

  7. Bucur, D. and Buttazzo, G., Variational Methods in Shape Optimization Problems, Boston: Birkhäuser, 2005.

  8. He, Y. and Guo, B.Z., The existence of optimal solution for a shape optimization problem on starlike domain, J. Optim. Theory Appl., 2012, vol. 152, pp. 21–30.

    Article  MathSciNet  MATH  Google Scholar 

  9. Hinton, E., Sienz, J., and Ozakca, M., Analysis and Optimization of Shells of Revolution and Prismatic Shells, London: Springer, 2003.

    MATH  Google Scholar 

  10. Krivoshapko, S., Optimal shells of revolution and main optimization, Stroit. Mekh. Inzh. Konstr. Sooruzh., 2019, vol. 15, no. 3, pp. 201–209.

    Google Scholar 

  11. Lellep, J. and Hein, H., Optimization of clamped plastic shallow shells subjected to initial impulsive loading, Eng. Optim., 2002, vol. 34, no. 5, pp. 545–556.

    Article  Google Scholar 

  12. Neittaanmaki, P., Sprekels, J., and Tiba, D., Optimization of Elliptic Systems, New York: Springer, 2006.

    MATH  Google Scholar 

  13. Olhoff, N. and Plaut, R.H., Bimodal optimization of vibrating shallow arches, Int. J. Solids Struct., 1983, vol. 19, no. 6, pp. 553–570.

    Article  MATH  Google Scholar 

  14. Stupishin, L.Yu., Kolesnikov, A.G., and Nikitin, K.E., Optimal design of flexible shallow shells on elastic foundation, J. Appl. Eng. Sci., 2017, vol. 15, no. 3, pp. 345–349.

    Article  Google Scholar 

  15. Velichkov, B., Existence and Regularity Results for Some Shape Optimization Problems, Pisa: Ed. Normale Pisa, 2015.

    Book  MATH  Google Scholar 

  16. Wang, G., Wang, L., and Yang, D., Shape optimization of an elliptic equation in an exterior domain, SIAM J. Control Optim., 2006, vol. 45, no. 2, pp. 532–547.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ozakca, M. and Gogus, M.T., Structural analysis and optimization of bells using finite elements, J. New Music Res., 2004, vol. 33, no. 1, pp. 61–69.

    Article  Google Scholar 

  18. Grigolyuk, E.I., Nonlinear vibrations and stability of shallow rods and shells, Izv. Akad. Nauk SSSR. Otd. Tekh. Nauk, 1955, no. 3, pp. 33–68.

  19. Timoshenko, S. and Woinorowsky-Krieger, S., Theory of Plates and Shells, New York: McGraw-Hill, 1959.

  20. Timoshenko, S., Strength of Materials. Part 2. Advanced Theory and Problems, New York: Krieger, 1976.

    MATH  Google Scholar 

  21. Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of Function Theory and Functional Analysis), Moscow: Nauka, 1976.

    Google Scholar 

  22. Bramble, J.H. and Osborn, J.E., Rate of convergence estimates for nonselfadjoint approximations, Math. Comput., 1973, vol. 27, pp. 525–549.

    Article  MathSciNet  MATH  Google Scholar 

  23. Arabyan, M.H., On the existence of solutions of two optimization problems, J. Optim. Theory Appl., 2018, vol. 177, pp. 291–315.

    Article  MathSciNet  MATH  Google Scholar 

  24. Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: Nauka, 1979.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Arabyan.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabyan, M.H. On the Optimality Conditions in the Weight Minimization Problem for a Shell of Revolution at a Given Vibration Frequency. Diff Equat 59, 1262–1279 (2023). https://doi.org/10.1134/S0012266123090112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266123090112

Navigation