Skip to main content
Log in

Classical Solution of the Second Mixed Problem for the Telegraph Equation with a Nonlinear Potential

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

For the telegraph equation with a nonlinear potential, we consider a mixed problem in the first quadrant in which the Cauchy conditions are specified on the spatial semiaxis and the Neumann condition is set on the temporal semiaxis. The solution is constructed by the method of characteristics in an implicit analytical form as a solution of some integral equations. The solvability of these equations is studied, as well as the dependence of the solutions on the smoothness of the initial data. For the problem under consideration, the uniqueness of the solution is proved and conditions are established under which a classical solution exists. If the matching conditions are not met, then a problem with conjugation conditions is constructed, and if the data is not smooth enough, then a mild solution is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Fizicheskaya entsiklopediya: v 5 tomakh (Encyclopedia of Physics in 5 Vols.), Prokhorov, A.M., Ed., Moscow: Ross. Entsikl., 1992, vol. 3.

  2. Nonlinear system. Wikipedia. https://en.wikipedia.org/wiki/Nonlinear_system. Accessed May 31, 2023.

  3. Nonlinear partial differential equation. Wikipedia. https://en.wikipedia.org/wiki/Nonlinear_partial_differential_equation. Accessed May 31, 2023.

  4. Korzyuk, V.I. and Rudzko, J.V., Classical solution of the first mixed problem for the telegraph equation with a nonlinear potential, Differ. Equations, 2022, vol. 58, no. 2, pp. 175–186.

    Article  MathSciNet  MATH  Google Scholar 

  5. Polyanin, A.D. and Zaitsev, V.F., Handbook of Nonlinear Partial Differential Equations, New York: Chapman & Hall/CRC, 2012.

    MATH  Google Scholar 

  6. Lebwohl, P. and Stephen, M.J., Properties of vortex lines in superconducting barriers, Phys. Rev., 1967, vol. 163, no. 2, pp. 376–379.

    Article  Google Scholar 

  7. Nakayama, Y., Liouville field theory: A decade after the revolution, Int. J. Modern Phys. A, 2004, vol. 19, no. 17–18, pp. 2771–2930.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bereanu, C., Periodic solutions of the nonlinear telegraph equations with bounded nonlinearities, J. Math. Anal. Appl., 2008, vol. 343, pp. 758–762.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kim, W.S., Boundary value problem for nonlinear telegraph equations with superlinear growth, Nonlinear Anal.: Theory, Methods & Appl., 1998, vol. 12, no. 12, pp. 1371–1376.

    Article  MathSciNet  MATH  Google Scholar 

  10. Fucik, S. and Mawhin, J., Generalized periodic solutions of nonlinear telegraph equations, Nonlinear Anal.: Theory, Methods & Appl., 1978, vol. 2, no. 5, pp. 609–617.

    Article  MathSciNet  MATH  Google Scholar 

  11. Rudakov, I.A., Periodic solutions of a nonlinear wave equation with Neumann and Dirichlet boundary conditions, Russ. Math., 2007, vol. 51, no. 2, pp. 44–52.

    Article  MathSciNet  MATH  Google Scholar 

  12. Rudakov, I.A., A nontrivial periodic solution of the nonlinear wave equation with homogeneous boundary conditions, Differ. Equations, 2005, vol. 41, no. 10, pp. 1467–1475.

    Article  MathSciNet  MATH  Google Scholar 

  13. Rudakov, I.A., Periodic solutions of a quasilinear wave equation with homogeneous boundary conditions, J. Math. Sci., 2008, vol. 150, no. 6, pp. 2588–2597.

    Article  MathSciNet  MATH  Google Scholar 

  14. Plotnikov, P.I., Existence of a countable set of periodic solutions of the problem of forced oscillations for a weakly nonlinear wave equation, Math. USSR-Sb., 1989, vol. 64, no. 2, pp. 543–556.

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, L.C., Partial Differential Equations, Providence, RI: Am. Math. Soc., 2010.

    MATH  Google Scholar 

  16. Jörgens, K., Das Anfangswertproblem in Großen für eine Klasse nichtlinearer Wellengleichungen, Math. Zeitschr., 1961, V. 208. P. 295–308.

  17. Shibata, Y. and Tsutsumi, Y., Global existence theorem for nonlinear wave equation in exterior domain, Proc. Jpn. Acad. Ser. A, 1984, vol. 60, pp. 14–17.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions, J.-L. and Strauss, W.A., Some non-linear evolution equations, Bull. Soc. Math. Fr., 1965, vol. 93, pp. 43–96.

    Article  MathSciNet  MATH  Google Scholar 

  19. Gallagher, I. and Gérard, P., Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl., 2001. V. 80. N. 1. P. 1–49.

  20. Ikehata, R., Two dimensional exterior mixed problem for semilinear damped wave equations, J. Math. Anal. Appl., 2005, vol. 301, no. 2, pp. 366–377.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ikehata, R., Global existence of solutions for semilinear damped wave equation in 2-D exterior domain, J. Differ. Equat., 2004, vol. 200, no. 1, pp. 53–68.

    Article  MathSciNet  MATH  Google Scholar 

  22. Lavrenyuk, S.P. and Pukach, P.Ya., Mixed problem for a nonlinear hyperbolic equation in a domain unbounded with respect to space variables, Ukr. Math. J., 2007, vol. 59, no. 11, pp. 1708–1718.

    Article  MathSciNet  MATH  Google Scholar 

  23. Jokhadze, O.M., Mixed problem with a nonlinear boundary condition for a semilinear wave equation, Differ. Equations, 2022, vol. 58, no. 5, pp. 593–609.

    Article  MathSciNet  MATH  Google Scholar 

  24. Korzyuk, V.I. and Rudzko, J.V., Classical and mild solution of the first mixed problem for the telegraph equation with a nonlinear potential, Izv. Irkutsk. Gos. Univ. Ser. Mat., 2023, vol. 43, pp. 48–63.

    MathSciNet  MATH  Google Scholar 

  25. Korzyuk, V.I. and Rudzko, J.V., Classical solution of the initial value problem for a one-dimensional quasilinear wave equation, Dokl. Nats. Akad. Nauk Belarusi, 2023, vol. 67, no. 1, pp. 14–19.

    Article  MathSciNet  Google Scholar 

  26. Kharibegashvili, S. and Jokhadze, O., The second Darboux problem for the wave equation with integral nonlinearity, Trans. A. Razmadze Math. Inst., 2016, vol. 170, no. 3, pp. 385–394.

    Article  MathSciNet  MATH  Google Scholar 

  27. Berikelashvili, G.K., Dzhokhadze, O.M., Midodashvili, B.G., and Kharibegashvili, S.S., On the existence and absence of global solutions of the first Darboux problem for nonlinear wave equations, Differ. Equations, 2008, vol. 44, no. 3, pp. 374–389.

    Article  MathSciNet  MATH  Google Scholar 

  28. Jokhadze, O., On existence and nonexistence of global solutions of Cauchy–Goursat problem for nonlinear wave equations, J. Math. Anal. Appl., 2008, vol. 340, no. 2, pp. 1033–1045.

    Article  MathSciNet  MATH  Google Scholar 

  29. Kharibegashvili, S.S. and Dzhokhadze, O.M., Second Darboux problem for the wave equation with a power-law nonlinearity, Differ. Equations, 2013, vol. 49, no. 12, pp. 1577–1595.

    Article  MathSciNet  MATH  Google Scholar 

  30. Lomovtsev, F.E., The second mixed problem for the general telegraph equation with variable coefficients in the first quarter of the plane, Vesn. Grodzensk. Dzyarzh. Univ. im. Yanki Kupaly. Ser. 2. Mat. Fiz. Inf. Vylich. Tekh. Kiravanne, 2022, vol. 12, no. 3, pp. 50–70.

    Google Scholar 

  31. Korzyuk, V.I. and Rudzko, J.V., Method of reflections for the Klein–Gordon equation,, Dokl. Nats. Akad. Nauk Belarusi, 2022, vol. 66, no. 3, pp. 263–268.

    Article  MathSciNet  Google Scholar 

  32. Korzyuk, V.I., Kozlovskaya, I.S., Sokolovich, V.Yu., and Serikov, V.P., Solution of arbitrary smoothness of a one-dimensional wave equation for a problem with mixed conditions, Izv. Nats. Akad. Nauk Belarusi. Ser. Fiz.-Mat. Nauk, 2021, vol. 57, no. 3, pp. 286–295.

    MathSciNet  Google Scholar 

  33. Korzyuk, V.I., Naumovets, S.N., and Sevastyuk, V.A., On the classical solution to the second mixed problem for the one-dimensional wave equation, Tr. Inst. Mat. Nats. Akad. Nauk Belarusi, 2018, vol. 26, no. 1, pp. 35–42.

    Google Scholar 

  34. Korzyuk, V.I. and Kozlovskaya, I.S., Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii. Ch. 2 (Classical Solutions to Problems for Hyperbolic Equations. Part 2), Minsk: Belarus. Gos. Univ., 2017.

  35. Pikulin, V.P. and Pohozaev, S.I., Prakticheskii kurs po uravneniyam matematicheskoi fiziki, Moscow: Nauka, 2004. Translated under the title: Equations in Mathematical Physics: A Practical Course, Basel: Birkhäuser, 2001.

  36. Korzyuk, V.I. and Rudzko, J.V., Classical solution of the initial-value problem for a one-dimensional quasilinear wave equation, XX Mezhdunar. Nauchn. Konf. Differ. Uravn. (Eruginskie chteniya–2022) (XX Int. Sci. Conf. Differ. Equat. (Erugin Read.–2022)) (Novopolotsk, 2022), Part 2, pp. 38–39.

  37. Cain, G.L.Jr. and Nashed, M.Z., Fixed points and stability for a sum of two operators in locally convex spaces, Pac. J. Math., 1971, vol. 39, no. 3, pp. 581–592.

    Article  MathSciNet  MATH  Google Scholar 

  38. Trenogin, V.A., Funktsional’nyi analiz (Functional Analysis), Moscow: Fizmatlit, 2002.

    Google Scholar 

  39. Mitrinović, D.S., Pečarić, J.E., and Fink, A.M., Inequalities Involving Functions and Their Integrals and Derivatives, Dordrecht: Springer, 1991.

  40. Vainberg, M.M., Variatsionnye metody issledovaniya nelineinykh operatorov, Moscow: Gos. Izd. Tekh.-Teor. Lit., 1956. Translated into English under the title: Variational Methods for the Study of Nonlinear Operators (with a chapter on Newton’s Method by Kantorovich, L.V. and Akilov, G.P.), San Francisco: Holden-Day, 1964.

  41. Korzyuk, V.I. and Rudzko, J.V., Curvilinear parallelogram identity and mean-value property for a semi- linear hyperbolic equation of second-order. arXiv:2204.09408.

  42. Korzyuk, V.I. and Stolyarchuk, I.I., Classical solution of the first mixed problem for second-order hyperbolic equation in curvilinear half-strip with variable coefficients, Differ. Equations, 2017, vol. 53, no. 1, pp. 74–85.

    Article  MathSciNet  MATH  Google Scholar 

  43. Korzyuk, V.I. and Stolyarchuk, I.I., Classical solution of the first mixed problem for an equation of Klein–Gordon–Fock type with inhomogeneous matching conditions, Dokl. Nats. Akad. Nauk Belarusi, 2019, vol. 63, no. 1, pp. 7–13.

    Article  MathSciNet  MATH  Google Scholar 

  44. Korzyuk, V.I., Kozlovskaya, I.S., and Naumovets, S.N., Classical solution of the first mixed problem to a one-dimensional wave equation with Cauchy-type conditions, Izv. Nats. Akad. Nauk Belarusi. Ser. Fiz.-Mat. Nauk, 2015, vol. 51, no. 1, pp. 7–21.

    Google Scholar 

  45. Korzyuk, V.I., Naumovets, S.N., and Serikov, V.P., Mixed problem for a one-dimensional wave equation with conjugation conditions and second-order derivatives in boundary conditions, Izv. Nats. Nauk Belarusi. Ser. Fiz.-Mat. Nauk, 2020, vol. 56, no. 3, pp. 287–297.

    MathSciNet  Google Scholar 

  46. Moiseev, E.I., Korzyuk, V.I., and Kozlovskaya, I.S., Classical solution of a problem with an integral condition for the one-dimensional wave equation, Differ. Equations, 2014, vol. 50, no. 10, pp. 1364–1377.

    Article  MathSciNet  MATH  Google Scholar 

  47. Ikeda, M., Inui, T., and Wakasugi, Y., The Cauchy problem for the nonlinear damped wave equation with slowly decaying data, Nonlinear Differ. Equat. Appl., 2017, vol. 50, no. 2, p. 10.

    Article  MathSciNet  MATH  Google Scholar 

  48. Iwamiya, T., Global existence of mild solutions to semilinear differential equations in Banach spaces, Hiroshima Math. J., 1986, vol. 50, pp. 499–530.

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation within the framework of the program of the Moscow Center for Fundamental and Applied Mathematics under agreement no. 075-15-2022-284.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Korzyuk or J. V. Rudzko.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korzyuk, V.I., Rudzko, J.V. Classical Solution of the Second Mixed Problem for the Telegraph Equation with a Nonlinear Potential. Diff Equat 59, 1216–1234 (2023). https://doi.org/10.1134/S0012266123090070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266123090070

Navigation