Skip to main content
Log in

Estimates of Integrally Bounded Solutions of Linear Differential Inequalities

  • ORDINARY DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We study integrally bounded solutions of the differential equation \(\mathscr {A}(x)=z \), where \(\mathscr {A} \) is a linear differential operator of order \(l \) defined on functions \(x\colon \mathbb {R} \to H \) (\(\mathbb {R}=(-\infty ,\infty \)) and \(H \) is a finite-dimensional Euclidean space). The right-hand side \(z \) is an integrally bounded function on \(\mathbb {R} \) ranging in \(H \) and satisfying the inequality \((\psi (t), z(t))\geq \delta |z(t) |\), \(t\in \mathbb {R} \), \(\delta >0\). Conditions are given on the operator \(\mathscr {A}\) and the function \(\psi \colon \mathbb {R}\to H\) that guarantee an inverse inequality of the following form for the solutions \(x \) under consideration:

$$ \int _{\tau }^{\tau +1}\big |x^{(l)}(t)\big |\thinspace dt\leq c\int _{\tau -1}^{\tau +2}\big |x(t)\big |\thinspace dt,$$

where the constant \(c \) is independent of the choice of a real number \(\tau \) and function \(x \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. The norm \(\|P\| \) of an \(m\times m \) matrix \(P \) is defined by the formula \(\|P\|=\max \{|Pv|:v\in H \), \(|v|\leq 1\} \).

REFERENCES

  1. Sobolev, S.L., Nekotorye primeneniya funktsional’nogo analiza v matematicheskoi fizike (Some Applications of Functional Analysis in Mathematical Physics), Moscow: Nauka, 1988.

    Google Scholar 

  2. Gol’dshtein, V.M. and Reshetnyak, Yu.G., Vvedenie v teoriyu funktsii s obobshchennymi proizvodnymi i kvazikonformnye otobrazheniya (Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings), Moscow: Nauka, 1983.

    MATH  Google Scholar 

  3. Krasnosel’skii, M.A., Burd, V.Sh., and Kolesov, Yu.S., Nelineinye pochti periodicheskie kolebaniya (Nonlinear Almost Periodic Oscillations), Moscow: Nauka, 1970.

    Google Scholar 

  4. Krasnosel’skii, M.A., Lifshits, E.A., and Sobolev, A.V., Pozitivnye lineinye sistemy (Positive Linear Systems), Moscow: Nauka, 1985.

    Google Scholar 

  5. Klimov, V.S., Interior estimates of solutions of linear differential inequalities, Differ. Equations, 2020, vol. 56, no. 8, pp. 1010–1020.

    Article  MathSciNet  MATH  Google Scholar 

  6. Lions, J.-L. and Magenes, E., Problèmes aux limites non homogènes et applications, Paris: Dunod, 1968. Translated under the title: Neodnorodnye granichnye zadachi i ikh prilozheniya, Moscow: Mir, 1971.

    MATH  Google Scholar 

  7. Krasnosel’skii, M.A. and Rutitskii, Ya.B., Vypuklye funktsii i prostranstva Orlicha (Convex Functions and Orlicz Spaces), Moscow: Fizmatgiz, 1958.

    Google Scholar 

  8. Vulikh, B.Z., Spetsial’nye voprosy geometrii konusov v normirovannykh prostranstvakh (Special Questions of the Geometry of Cones in Normed Spaces), Kalinin: Kalininsk. Univ., 1978.

    Google Scholar 

  9. Polovinkin, E.S. and Balashov, M.V., Elementy vypuklogo i sil’no vypuklogo analiza (Elements of Convex and Strongly Convex Analysis), Moscow: Fizmatlit, 2007.

    Google Scholar 

  10. Bogachev, V.I. and Smolyanov, O.G., Deistvitel’nyi i funktsional’nyi analiz (Real and Functional Analysis), Moscow–Izhevsk: Regulyarnaya Khaoticheskaya Din., 2011.

    Google Scholar 

  11. Kantorovich, L.V. and Akilov, G.P., Funktsional’nyi analiz (Functional Analysis), Moscow: Nauka, 1977.

    Google Scholar 

  12. Halanay, A. and Wexler, D., Teoria calitativă a sistemelor cu impulsuri, Bucharest: Ed. Acad., 1968. Translated under the title: Kachestvennaya teoriya impul’snykh sistem, Moscow: Mir, 1971.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Klimov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimov, V.S. Estimates of Integrally Bounded Solutions of Linear Differential Inequalities. Diff Equat 59, 1151–1165 (2023). https://doi.org/10.1134/S001226612309001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001226612309001X

Navigation