Skip to main content
Log in

Interior of the Integral of a Set-Valued Mapping and Problems with a Linear Control System

  • CONTROL THEORY
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

The dependence of the radius of a ball centered at zero inscribed in the values of the integral of a set-valued mapping on the upper integration limit is studied. For some types of integrals, exact asymptotics of the radius with respect to the upper limit are found when the upper limit tends to zero. Examples of finding this radius are considered. The results obtained are used to derive new sufficient conditions for the uniformly continuous dependence of the minimum time and solution-point in the linear minimum time control problem on the initial data. We also consider applications in some algorithms with a reachability set of a linear control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Aumann, R., Integrals of set-valued functions, J. Math. Anal. Appl., 1965, vol. 12, no. 1, pp. 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  2. Lyapunov, A.A., On completely additive vector functions, Izv. Akad. Nauk SSSR. Ser. Mat., 1940, vol. 4, no. 6, pp. 465–478.

    Google Scholar 

  3. Polovinkin, E.S., Mnogoznachnyi analiz i differentsial’nye vklyucheniya (Set-Valued Analysis and Differential Inclusions), Moscow: Fizmatlit, 2014.

    Google Scholar 

  4. Lee, E.B. and Markus, L., Foundations of Optimal Control Theory, New York: Wiley, 1967.

    MATH  Google Scholar 

  5. Aubin, J.-P. and Cellina, A., Differential Inclusions, Berlin–Heidelberg: Springer, 1984.

    Book  MATH  Google Scholar 

  6. Polyak, B.T., Existence theorems and convergence of minimizing sequences for extremum problems under constraints, Dokl. Akad. Nauk SSSR, 1966, vol. 166, no. 2, pp. 287–290.

    MathSciNet  Google Scholar 

  7. Diestel, J., Geometry of Banach Spaces, Berlin–Heidelberg–New York: Springer, 1975. Translated under the title: Geometriya banakhovykh prostranstv, Киев: Vishcha Shkola, 1980.

    Book  MATH  Google Scholar 

  8. Liverovskii, A.A., Some properties of the Bellman function for linear and symmetric polysystems, Differ. Uravn., 1980, vol. 16, no. 3, pp. 414–423.

    MathSciNet  Google Scholar 

  9. Veliov, V.M., On the convexity of integrals of multivalued mappings: Application in control theory, J. Optim. Theory Appl., 1987, vol. 54, pp. 541–563.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kirillova, F.M., On the well-posedness of the statement of an optimal control problem, Izv. VUZov. Mat., 1958, no. 4, pp. 113–126.

  11. Petrov, N.N., On the continuity of the generalized Bellman function, Differ. Uravn., 1970, vol. 6, no. 2, pp. 373–374.

    MathSciNet  Google Scholar 

  12. Petrov, N.N., On the Bellman function for the minimum time control problem, Prikl. Mat. Mekh., 1970, vol. 34, no. 5, pp. 820–826.

    Google Scholar 

  13. Cannarsa, P. and Sinestrary, C., Convexity properties of the minimum time function, Calc. Var., 1995, vol. 3, pp. 273–298.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kun, L.A. and Pronozin, Yu.F., On regularization of the Bellman method in minimum time control problems, Dokl. Akad. Nauk SSSR, 1971, vol. 200, no. 6, pp. 1294–1297.

    Google Scholar 

  15. Satimov, N.Yu., On the smoothness of the Bellman function for a linear optimal control problem, Differ. Uravn., 1973, vol. 9, no. 12, pp. 2176–2179.

    MathSciNet  MATH  Google Scholar 

  16. Tynyanskii, N.T. and Arutyunov, A.V., Linear time-optimal processes, Vestn. Mosk. Univ. Ser. 15. Vychisl. Mat. Kibern., 1979, no. 2, pp. 32–37.

  17. Arutyunov, A.V., On a class of linear time-optimal processes, Differ. Uravn., 1982, vol. 18, no. 4, pp. 555–560.

    MATH  Google Scholar 

  18. Liverovskii, A.A., On the Hölder property of the Bellman function of planar control systems, Differ. Uravn., 1981, vol. 17, no. 4, pp. 604–613.

    MathSciNet  Google Scholar 

  19. Evans, L.C. and Janaes, M.R., The Hamilton–Jacobi–Bellman equation for time optimal control, SIAM J. Control Optim., 1989, vol. 27, pp. 1477–1489.

    Article  MathSciNet  Google Scholar 

  20. Soravia, P., Hölder continuity of the minimum-time function for \(C^1 \)-manifold targets, J. Optim. Theory Appl., 1992, vol. 75, pp. 401–421.

    Article  MathSciNet  MATH  Google Scholar 

  21. Balashov, M.V. and Repovs, D., Uniform convexity and the splitting problem for selections, J. Math. Anal. Appl., 2009, vol. 360, no. 1, pp. 307–316.

    Article  MathSciNet  MATH  Google Scholar 

  22. Balashov, M.V. and Kamalov, R.A., Optimization of the reachable set of a linear system with respect to another set, Comput. Math. Math. Phys., 2023, vol. 63, no. 5, pp. 751–770.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, https://rscf.ru/en/project/22-11-00042/, at Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Balashov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balashov, M.V. Interior of the Integral of a Set-Valued Mapping and Problems with a Linear Control System. Diff Equat 59, 1105–1116 (2023). https://doi.org/10.1134/S0012266123080098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266123080098

Navigation