Skip to main content
Log in

Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains

  • NUMERICAL METHODS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set. An objective function that characterizes the degree of deviation of the parametric sets of states from experimental interval estimates is constructed in the space of parameter uncertainty domains. To minimize the objective function, a sliding window algorithm has been developed, which is related to gradient methods. It is based on an adaptive interpolation algorithm that allows one to explicitly obtain parametric sets of states of a dynamical system within a given parameter uncertainty domain (window). The efficiency and performance of the proposed algorithm are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Schenck, H., Theories of Engineering Experimentation, New York–St. Louis–San Francisco–Toronto–Sydney–London: McGraw-Hill, 1968. Translated under the title: Teoriya inzhenernogo eksperimenta, Moscow: Mir, 1972.

    Google Scholar 

  2. Martyshov, M.N., Emelyanov, A.V., Demin, V.A., et al., Multifilamentary character of anticorrelated capacitive and resistive switching in memristive structures based on (Co-Fe-B)x(LiNbO3)100-x nanocomposite, Phys. Rev. Appl., 2020, vol. 14, no. 3, p. 034016.

    Article  Google Scholar 

  3. Moore, R., Interval Analysis, Englewood Cliffs: Prentice Hall, 1966.

    MATH  Google Scholar 

  4. Moore, R.E., Kearfott, R.B., and Cloud, M.J., Introduction to Interval Analysis, Philadelphia, 2009.

  5. Sharyi, S.P., Konechnomernyi interval’nyi analiz (Finite-Dimensional Interval Analysis), Novosibirsk: XYZ, 2019.

    Google Scholar 

  6. Dobronets, B.S., Interval’naya matematika (Interval Mathematics), Krasnoyarsk: SFU, 2007.

    Google Scholar 

  7. Xiao, N., Fedele, F., and Muhanna, R.L., Inverse problems under uncertainties—an interval solution for the beam finite element, 11th Int. Conf. Struct. Safety & Reliab. (New York, 2013), pp. 1–8.

  8. Petrikevich, Ya.I., Structural-parametric identification of dynamic objects based on interval initial data, Cand. Sci. (Eng.) Dissertation, Moscow, 2006.

  9. Diligenskaya, A.N. and Samokish, A.V., Parametric identification in inverse heat conduction problems under conditions of interval uncertainty based on neural networks, Vestn. Samarsk. Gos. Tekh. Univ., 2020, vol. 28, no. 4 (68), pp. 6–18.

    Google Scholar 

  10. Morozov, A.Yu. and Reviznikov, D.L., Interval approach to solving parametric identification problems for dynamical systems, Differ. Equations, 2022, vol. 58, no. 7, pp. 952–965.

    Article  MathSciNet  MATH  Google Scholar 

  11. Morozov, A.Y. and Reviznikov, D.L., Adaptive interpolation algorithm based on a kd-tree for numerical integration of systems of ordinary differential equations with interval initial conditions, Diff. Equations, 2018, vol. 54, no. 7, pp. 945–956.

    Article  MathSciNet  MATH  Google Scholar 

  12. Morozov, A.Yu., Reviznikov, D.L., and Gidaspov, V.Yu., Adaptive interpolation algorithm based on a kd-tree for the problems of chemical kinetics with interval parameters, Math. Models Comput. Simul., 2019, vol. 11, no. 4, pp. 622–633.

    Article  MathSciNet  MATH  Google Scholar 

  13. Morozov, A.Yu., Interpolation approach in problems of simulation of dynamical systems with ellipsoid parameter estimations, Tr. Mosk. Aviats. Inst., 2022, no. 124, pp. 1–24.

  14. Smolyak, S.A., Quadrature and interpolation formulas on tensor products of some classes of functions, Dokl. Akad. Nauk SSSR, 1963, vol. 148, no. 5, pp. 1042–1045.

    MathSciNet  MATH  Google Scholar 

  15. Bungatrz, H-J. and Griebel, M., Sparse grids, Acta Numerica, 2004, vol. 13, no. 1, pp. 147–269.

    MathSciNet  MATH  Google Scholar 

  16. Gerstner, T. and Griebel, M., Sparse grids, Encyclopedia of Quantitative Finance, Cont, R., Ed., New York: Wiley, 2010.

  17. Morozov, A.Yu., Zhuravlev, A.A., and Reviznikov, D.L., Sparse grid adaptive interpolation in problems of modeling dynamic systems with interval parameters, Mathematics, 2021, vol. 9, p. 298.

    Article  Google Scholar 

  18. Morozov, A.Y. and Reviznikov, D.L., Adaptive interpolation algorithm on sparse meshes for numerical integration of systems of ordinary differential equations with interval uncertainties, Differ. Equations, 2021, vol. 57, no. 7, pp. 947–958.

    Article  MathSciNet  MATH  Google Scholar 

  19. Morozov, A.Yu., Parallel adaptive interpolation algorithm based on sparse grids for modeling dynamical systems with interval parameters, Progr. Inzh., 2021, vol. 12, no. 8, pp. 395–403.

    Google Scholar 

  20. Dem’yanov, V.F. and Malozemov, V.N., Vvedenie v minimaks (Introduction to Minimax), Moscow: Nauka, 1972.

    MATH  Google Scholar 

  21. Evtushenko, Yu.G., Some local properties of minimax problems, USSR Comput. Math. Math. Phys., 1974, vol. 14, no. 3, pp. 129–138.

    Article  Google Scholar 

  22. Gill, P.E., Murray, W., and Wright, M.H, Practical Optimization, London–New York–Toronto–Sydney–San Francisco: Academic Press, 1981. Translated under the title: Prakticheskaya optimizatsiya, Moscow: Mir, 1985.

    MATH  Google Scholar 

  23. Panteleev, A.V. and Letova, T.A., Metody optimizatsii v primerakh i zadachakh (Optimization Methods in Exercises and Problems), Moscow: Vyssh. Shkola, 2005.

    Google Scholar 

  24. Sylvester, J.J., A question in the geometry of situation, Q. J. Math., 1857, vol. 1, p. 79.

    Google Scholar 

  25. Vasil’yev, N.S., Numerical solution of extremal problems on constructing ellipsoids and parallelepipeds, USSR Comput. Math. Math. Phys., 1987, vol. 27, no. 2, pp. 12–17.

    Article  Google Scholar 

  26. Shor, N.Z. and Stetsenko, S.I., Algorithm for successive space compression for constructing the described ellipsoid of minimum volume, in Issledovanie metodov resheniya ekstremal’nykh zadach (Study of Methods for Solving Extremal Problems), Kiev: IK, 1990, pp. 25–29.

    Google Scholar 

  27. Khachiyan, L.G., Rounding of polytopes in the real number model of computation, Math. Oper. Res., 1996, vol. 21, no. 2, pp. 307–320.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Morozov or D. L. Reviznikov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.Y., Reviznikov, D.L. Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains. Diff Equat 59, 833–846 (2023). https://doi.org/10.1134/S0012266123060113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266123060113

Navigation