Skip to main content
Log in

Explicit–Implicit Schemes for Calculating the Dynamics of Elastoviscoplastic Media with a Short Relaxation Time

  • NUMERICAL METHODS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider the dynamic behavior of elastoviscoplastic media under the action of an external load. For the general case of a nonlinear viscosity function describing high-speed hardening, we construct an explicit–implicit calculation scheme of the second order of approximation that permits one to obtain a numerical solution of the original semilinear hyperbolic problem. A distinctive feature of this approach is that it does not use the method of splitting by physical processes. Despite this, an explicit computational algorithm was obtained that allows efficient implementation on modern computing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Kukudzhanov, V.N., Vychislitel’naya mekhanika sploshnykh sred (Computational Continuum Mechanics), Moscow: Fizmatlit, 2008.

    Google Scholar 

  2. Nikitin, I.S., Dynamic models of layered and block media with slip, friction, and separation, Mech. Solids, 2008, vol. 43, no. 4, pp. 652–661.

    Article  Google Scholar 

  3. Nikitin, I.S., Teoriya neuprugikh sloistykh i blochnykh sred (Theory of Inelastic Layered and Block Media), Moscow: Fizmatlit, 2019.

    Google Scholar 

  4. Nowacki, W.K., Zagadnienia falowe w teorii plastyczności, Warsaw: Panstwowe Wydawnictwo Naukowe, 1974. Translated under the title: Volnovye zadachi teorii plastichnosti, Moscow: Mir, 1978.

    Google Scholar 

  5. Freundental, A.M. and Geiringer, H., Elastizität und Plastizität, Berlin–Göttingen–Heidelberg: Springer-Verlag, 1958. Translated under the title: Matematicheskie teorii neuprugoi sploshnoi sredy, Moscow: GIFML, 1962.

    Google Scholar 

  6. Kukudzhanov, V.N., Wave propagation in elastoviscoplastic materials with a general diagram, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2001, no. 5, pp. 96–111.

  7. Kolarov, D., Baltov, A., and Boncheva, N., Mechanics of Plastic Media, Sophia, 1975. Translated under the title: Mekhanika plasticheskikh sred, Moscow: Mir, 1979.

  8. Duvaut, G. and Lions, J.-L., Les inéquations en mécanique et en physique, Paris: Dunod, 1972. Translated under the title: Neravenstva v mekhanike i fizike, Moscow: Nauka, 1980.

    MATH  Google Scholar 

  9. Sadovskii, V.M., Razryvnye resheniya v zadachakh dinamiki uprugoplasticheskikh sred (Discontinuous Solutions in Problems of the Dynamics of Elastic-Plastic Media), Moscow: Nauka, 1997.

    Google Scholar 

  10. Golubev, V.I., Shevchenko, A.V., Khokhlov, N.I., Petrov, I.B., and Malovichko, M.S., Compact grid-characteristic scheme for the acoustic system with the piece-wise constant coefficients, Int. J. Appl. Mech., 2022, p. 2250002.

  11. LeVeque, R.J., Finite Volume Methods for Hyperbolic Problems, Cambridge: Cambridge Univ. Press, 2002.

  12. Dal Maso, G., LeFloch, P.G., and Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 1995, vol. 74, no. 6, pp. 483–548.

    MathSciNet  MATH  Google Scholar 

  13. Pares, C., Numerical methods for nonconservative hyperbolic systems: A theoretical framework, SIAM J. Numer. Anal., 2006, vol. 44, no. 1, pp. 300–321.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kulikovskii, A.G., Pogorelov, N.V., and Semenov, A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii (Mathematical Issues of Numerical Solution of Hyperbolic Systems of Equations), Moscow: Fizmatlit, 2001.

    MATH  Google Scholar 

  15. Kukudzhanov, V.N., Numerical simulation of dynamic processes of deformation and fracture of elastoplastic media, Usp. Mekh., 1985, vol. 8, no. 4, pp. 21–65.

    Google Scholar 

  16. Wilkins, M.L., Calculation of Elastoplastic Flows. Computational Methods in Hydrodynamics, Univ. California Lawrence Radiat. Lab., 1963. Translated under the title: Raschet uprugoplasticheskikh techenii. Vychislitel’nye metody v gidrodinamike, Moscow: Mir, 1967.

  17. Wilkins, M.L., Computer Simulation of Dynamic Phenomena, Berlin–Heidelberg–New York: Springer-Verlag, 1999.

    Book  MATH  Google Scholar 

  18. Kukudzhanov, V.N., Splitting method for elastoplastic equations, Mekh. Tverd. Tela, 2004, no. 1, pp. 98–108.

  19. Abuzyarov, M.Kh., Bazhenov, V.G., Kotov, V.L., et al., Discontinuity decay method in the dynamics of elastoplastic media, Comput. Math. Math. Phys., 2000, vol. 40, no. 6, pp. 900–913.

    MathSciNet  MATH  Google Scholar 

  20. Burago, N.G., Modeling the destruction of elastoplastic bodies, Vychisl. Mekh. Sploshn. Sred, 2008, vol. 1, no. 4, pp. 5–20.

    MathSciNet  Google Scholar 

  21. Golubev, V.I., Shevchenko, A.V., and Petrov, I.B., Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting, Comput. Res. Model., 2022, vol. 14, no. 4, pp. 899–910.

    Article  Google Scholar 

  22. Kholodov, A.S. and Kholodov, Ya.A., Monotonicity criteria for difference schemes designed for hyperbolic equations, Comput. Math. Math. Phys., 2006, vol. 46, pp. 1560–1588.

    Article  MathSciNet  Google Scholar 

  23. Golubev, V.I., Nikitin, I.S., Vasyukov, A.V., and Nikitin, A.D., Fractured inclusion localization and characterization based on deep convolutional neural networks, Procedia Struct. Integr., 2023, vol. 43, pp. 29–34.

    Article  Google Scholar 

  24. Golubev, V., Vasyukov, A., Nikitin, I., et al., Continuum model of fractured media in direct and inverse seismic problems, Continuum Mech. Thermodyn., 2022.

  25. Guseva, E.K., Beklemysheva, K.A., Golubev, V.I., Epifanov, V.P., and Petrov, I.B., Investigation of ice rheology based on computer simulation of low-speed impact, in Mathematical Modeling and Supercomputer Technologies. MMST 2022. Commun. Comput. Inf. Sci. Vol. 1750 , Balandin, D., Barkalov, K., and Meyerov, I., Eds., Cham: Springer, 2022, pp. 176–184.

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-71-10060. https://rscf.ru/en/project/19-71-10060/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Golubev, I. S. Nikitin, N. G. Burago or Yu. A. Golubeva.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, V.I., Nikitin, I.S., Burago, N.G. et al. Explicit–Implicit Schemes for Calculating the Dynamics of Elastoviscoplastic Media with a Short Relaxation Time. Diff Equat 59, 822–832 (2023). https://doi.org/10.1134/S0012266123060101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266123060101

Navigation