Skip to main content
Log in

On the Asymptotic Stability and Ultimate Boundedness of Solutions of a Class of Nonlinear Systems with Delay

  • ORDINARY DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

For a certain class of nonlinear systems of differential equations with constant delay, we study the conditions for the asymptotic stability of the zero solution and the ultimate boundedness of the solutions. To obtain such conditions, we propose special constructions of Lyapunov–Krasovskii full-type functionals. Estimates of the transient time are found, and an analysis of the influence of perturbations on the dynamics of systems is carried out. In addition, we study the case in which the systems have switching operation modes and determine conditions under which the asymptotic stability or ultimate boundedness is preserved for any admissible switching laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Karafyllis, I., Malisoff, M., Mazenc, F., and Pepe, P., Recent Results on Nonlinear Delay Control Systems, Cham: Springer, 2016.

    Book  MATH  Google Scholar 

  2. Fridman, E., Introduction to Time-Delay Systems: Analysis and Control, Basel: Birkhäuser, 2014.

  3. Richard, J.-P., Time-delay systems: an overview of some recent advances and open problems, Automatica, 2003, vol. 39, pp. 1667–1694.

    Article  MathSciNet  MATH  Google Scholar 

  4. Glyzin, S.D. and Kolesov, A.Yu., On a method of mathematical modeling of electrical synapses, Differ. Equations, 2022, vol. 58, no. 7, pp. 853–868.

    Article  MathSciNet  MATH  Google Scholar 

  5. Lukoyanov, N.Yu. and Plaksin, A.P., Quasigradient aiming strategies in optimal control problems for time-delay systems, Differ. Equations, 2022, vol. 58, no. 11, pp. 1515–1524.

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, G., Hua, C., and Guan, X., Asynchronous stabilization of switched neutral systems: a cooperative stabilizing approach, Nonlinear Anal. Hybrid Syst., 2019, no. 33, pp. 380–392.

  7. Problemy setevogo upravleniya (Network Control Problems), Fradkov, A.L., Ed., Moscow–Izhevsk: Inst. Komp’yut. Issled., 2015.

  8. Hale, J., Theory of Functional Differential Equations, New York–Heidelberg–Berlin: Springer-Verlag, 1977. Translated under the title: Teoriya funktsional’no-differentsial’nykh uravnenii, Moscow: Mir, 1984.

    Book  MATH  Google Scholar 

  9. Kharitonov, V.L., Time-Delay Systems. Lyapunov Functionals and Matrices, Boston: Birkhäuser, 2013.

  10. Myshkis, A.D., Lineinye differentsial’nye uravneniya s zapazdyvayushchim argumentom (Linear Differential Equations with Retarded Argument), Moscow: Nauka, 1972.

    Google Scholar 

  11. Metel’skii, A.V., Simultaneous stabilization of a family of delay differential systems by a dynamic state feedback, Differ. Equations, 2021, vol. 57, no. 11, pp. 1495–1515.

    Article  MathSciNet  MATH  Google Scholar 

  12. Efimov, D., Polyakov, A., Perruquetti, W., and Richard, J.P., Weighted homogeneity for time-delay systems: finite-time and independent of delay stability, IEEE Trans. Autom. Control, 2016, vol. 61, no. 1, pp. 210–215.

    Article  MathSciNet  MATH  Google Scholar 

  13. Schiffer, J., Fridman, E., Ortega, R., and Raisch, J., Stability of a class of delayed port-Hamiltonian systems with application to microgrids with distributed rotational and electronic generation, Automatica, 2016, vol. 74, pp. 71–79.

    Article  MathSciNet  MATH  Google Scholar 

  14. Aleksandrov, A. and Efimov, D., Stability analysis of switched homogeneous time-delay systems under synchronous and asynchronous commutation, Nonlinear Anal. Hybrid Syst., 2021, vol. 42, p. 101090.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zubov, V.I., Ustoichivost’ dvizheniya (Stability of Motion), Moscow: Vyssh. Shkola, 1973.

    Google Scholar 

  16. Barbashin, E.A., Funktsii Lyapunova (Lyapunov Functions), Moscow: Nauka, 1970.

    MATH  Google Scholar 

  17. Rouche N, Habets, P., and Laloy, M., Stability Theory by Lyapunov’s Direct Method, New York–Heidelberg–Berlin: Springer-Verlag, 1977. Translated under the title: Pryamoi metod Lyapunova v teorii ustoichivosti, Moscow: Nauka, 1980.

    Book  MATH  Google Scholar 

  18. Liao, X. and Yu, P., Absolute Stability of Nonlinear Control Systems, New York–Heidelberg–Berlin: Springer, 2008.

    Book  MATH  Google Scholar 

  19. Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures on the Mathematical Theory of Stability), Moscow: Nauka, 1967.

    Google Scholar 

  20. Kosov, A.A. and Kozlov, M.V., On asymptotic stability of homogeneous singular systems with switching, Autom. Remote Control, 2019, vol. 80, no. 3, pp. 429–436.

    Article  MathSciNet  MATH  Google Scholar 

  21. Aleksandrov, A.Yu., Zhabko, A.P., and Pecherskii, V.S., Full-type functionals for some classes of homogeneous differential-difference systems, Sb. tr. VIII mezhd. nauchn. konf. “Sovremennye metody prikladnoi matematiki, teorii upravleniya i komp’yuternykh tekhnologii” (Proc. VIII Int. Sci. Conf. “Modern Methods of Applied Mathematics, Control Theory, and Computer Technology”) (Voronezh, September 21–26, 2015), pp. 5–8

  22. Efimov, D. and Aleksandrov, A., Analysis of robustness of homogeneous systems with time delays using Lyapunov–Krasovskii functionals, Int. J. Robust Nonlinear Control, 2021, vol. 31, no. 9, pp. 3730–3746.

    Article  MathSciNet  Google Scholar 

  23. Rosier, L., Homogeneous Lyapunov function for homogeneous continuous vector field, Syst. Control Lett., 1992, vol. 19, pp. 467–473.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hardy, G.H., Littlewood, J.E., and P´olya, G., Inequalities, Cambridge: Cambridge Univ. Press, 1934. Translated under the title: Neravenstva, Moscow: Gos. Izd. Inostr. Lit., 1948.

    Google Scholar 

  25. Zheng, D., Zhang, H., Zhang, J.A., Zheng, W., and Su, S.W., Stability of asynchronous switched systems with sequence-based average dwell time approaches, J. Franklin Inst., 2020, vol. 357, no. 4, pp. 2149–2166.

    Article  MathSciNet  MATH  Google Scholar 

  26. Vassilyev, S.N. and Kosov, A.A., Analysis of hybrid systems’ dynamics using the common Lyapunov functions and multiple homomorphisms, Autom. Remote Control, 2011, vol. 72, no. 6, pp. 1163–1183.

    Article  MathSciNet  MATH  Google Scholar 

  27. Aleksandrov, A.Yu., Kosov, A.A., and Platonov, A.V., On the asymptotic stability of switched homogeneous systems, Syst. Control Lett., 2012, vol. 61, no. 1, pp. 127–133.

    Article  MathSciNet  MATH  Google Scholar 

  28. Martynyuk, A.A. and Obolenskii, A.Yu., On the stability of solutions of Waűewski’s autonomous systems, Differ. Uravn., 1980, vol. 16, no. 8, pp. 1392–1407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Aleksandrov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.Y. On the Asymptotic Stability and Ultimate Boundedness of Solutions of a Class of Nonlinear Systems with Delay. Diff Equat 59, 441–451 (2023). https://doi.org/10.1134/S0012266123040018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266123040018

Navigation