Skip to main content
Log in

On the Absence of Solutions of Differential Inequalities with the \(\infty \)-Laplacian

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

For differential inequalities with the \(\infty \)-Laplacian in the principal part, we find conditions for the absence of solutions in unbounded domains. Examples are given that demonstrate the accuracy of these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Crandall, M.G., Ishii, H., and Lions, P.-L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc. (N.S.), 1992, vol. 27, pp. 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  2. Lu, G. and Wang, P., Inhomogeneous infinity Laplace equation, Adv. Math., 2008, vol. 217, pp. 1838–1868.

  3. Astashova, I.V., Uniqueness of solutions of second-order equations of the Emden–Fowler type, Probl. Mat. Anal., 2021, vol. 109, pp. 11–16.

    MATH  Google Scholar 

  4. Astashova, I.V., Asymptotic behavior of singular solutions of Emden–Fowler type equations, Differ. Equations, 2019, vol. 55, no. 5, pp. 581–590.

    Article  MathSciNet  MATH  Google Scholar 

  5. Astashova, I.V., On asymptotic behavior of blow-up solutions to higher-order differential equations with general nonlinearity, in Differential and Difference Equations with Applications. ICDDEA 2017. Springer Proc. Math. & Stat., Pinelas, S., Caraballo, T., Kloeden, P., and Graef, J., Eds., Cham: Springer, 2018, vol. 230, pp. 1–12.

  6. Baras, P. and Pierre, M., Singularités éliminables pour des équations semilinéaires, Ann. Inst. Fourier, 1984, vol. 34, pp. 185–205.

    Article  MathSciNet  MATH  Google Scholar 

  7. Galakhov, E.I., Solvability of an elliptic equation with a gradient nonlinearity, Differ. Equations, 2005, vol. 41, no. 5, pp. 693–702.

    Article  MathSciNet  MATH  Google Scholar 

  8. Galakhov, E.I., Some nonexistence results for quasilinear elliptic problems, J. Math. Anal. Appl., 2000, vol. 252, no. 1, pp. 256–277.

    Article  MathSciNet  MATH  Google Scholar 

  9. Galakhov, E.I., Salieva, O.A., and Fino, A.Z., Absence of global weak solutions to evolution equations with a fractional Laplacian, Math. Notes, 2020, vol. 108, no. 6, pp. 877–883.

    MathSciNet  MATH  Google Scholar 

  10. Keller, J.B., On solutions of \(\Delta u=f (u) \), Comm. Pure Appl. Math., 1957, vol. 10, pp. 503–510.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kondrat’ev, V.A. and Landis, E.M., On qualitative properties of solutions of a nonlinear equation of second order, Math. USSR-Sb., 1989, vol. 63, no. 2, pp. 337–350.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kon’kov, A.A., On global solutions of the radial \(p \)-Laplace equation, Nonlinear Anal., 2009, vol. 70, pp. 3437–3451.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kon’kov, A.A., On solutions of non-autonomous ordinary differential equations, Izv. Math., 2001, vol. 65, no. 2, pp. 285–327.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kon’kov, A.A., On properties of solutions of a class of nonlinear ordinary differential equations, J. Math. Sci. (N.Y.), 2007, vol. 143, no. 4, pp. 3303–3321.

    Article  MathSciNet  MATH  Google Scholar 

  15. Korpusov, M.O. and Matveeva, A.K., On critical exponents for weak solutions of the Cauchy problem for a non-linear equation of composite type, Izv. Math., 2021, vol. 85, no. 4, pp. 705–744.

    Article  MathSciNet  MATH  Google Scholar 

  16. Korpusov, M.O. and Panin, A.A., On the nonextendable solution and blow-up of the solution of the one-dimensional equation of ion-sound waves in a plasma, Math. Notes, 2017, vol. 102, no. 3, pp. 350–360.

    Article  MathSciNet  MATH  Google Scholar 

  17. Korpusov, M.O. and Shafir, R.S., On the blowup of solutions of the Cauchy problem for nonlinear equations of ferroelectricity theory, Theor. Math. Phys., 2022, vol. 212, no. 3, pp. 1169–1180.

    Article  MathSciNet  Google Scholar 

  18. Mitidieri, E. and Pokhozhaev, S.I., A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 2001, vol. 234, pp. 1–362.

    MATH  Google Scholar 

  19. Osserman, R., On the inequality \(\Delta u\ge f (u) \), Pac. J. Math., 1957, vol. 7, pp. 1641–1647.

    Article  MATH  Google Scholar 

  20. Mi, L., Blow-up rates of large solutions for infinity Laplace equations, Appl. Math. Comput., 2017, vol. 298, pp. 36–44.

    MathSciNet  MATH  Google Scholar 

  21. Mohammed, A. and Mohammed, S., Boundary blow-up solutions to degenerate elliptic equations with non-monotone inhomogeneous terms, Nonlinear Anal., 2012, vol. 75, pp. 3249–3261.

    Article  MathSciNet  MATH  Google Scholar 

  22. Wan, H., The exact asymptotic behavior of boundary blow-up solutions to infinity Laplacian equations, Z. Angew. Math. Phys., 2016, vol. 67, no. 97, pp. 1–14.

    MathSciNet  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, project no. 20-11-20272 as well as by the Strategic Academic Leadership Program of the Peoples’ Friendship University of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kon’kov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kon’kov, A.A. On the Absence of Solutions of Differential Inequalities with the \(\infty \)-Laplacian. Diff Equat 59, 243–259 (2023). https://doi.org/10.1134/S0012266123020088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266123020088

Navigation