Skip to main content
Log in

Algebraic Criterion for the Existence of a Center at a Monodromic Singular Point of a Polynomial Liénard System

  • ORDINARY DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider the center–focus problem for a polynomial Liénard system (polynomial vector field \((y-F(x)){\partial }/{\partial x}-\tilde {g}(x){\partial }/{\partial y}\)) at the monodromic singular point \((0,0) \). We obtain a description of the semialgebraic set of centers in the space of coefficients of the polynomials \((F(x)=\int \nolimits _0^x\tilde {f}(\tau )\thinspace d\tau \), \(G(x)=\int \nolimits _0^x\tilde {g }(\tau )\thinspace d\tau )\) based on eliminating the parameters \(A\), \(B \), and \(C \) from the composition condition \(F=B(A) \), \(G=C(A)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nemytskii, V.V. and Stepanov, V.V., Kachestvennaya teoriya differentsial’nykh uravnenii (Qualitative Theory of Differential Equations), Moscow: Gostekhizdat, 1947.

    Google Scholar 

  2. Amel’kin, V.V., Lukashevich, N.A., and Sadovskii, A.P., Nelineinye kolebaniya v sistemakh vtorogo poryadka (Nonlinear Oscillations in Second-Order Systems), Minsk: Belarus. Gos. Univ., 1982.

    Google Scholar 

  3. Medvedeva, N.B., On the analytical solvability of the problem of distinguishing between center and focus, Proc. Steklov Inst. Math., 2006, vol. 254, pp. 11–100.

    Article  Google Scholar 

  4. Romanovski, V.G. and Shafer, D.S., The Center and Cyclicity Problems: A Computational Algebra Approach, Basel: Birkhäuser, 2010.

  5. Yirong Lin, Jibin Li, and Wentao Huang, Planar Dynamical Systems. Selected Classical Problems, Berlin: de Gruyter, 2014.

    MATH  Google Scholar 

  6. Kukles, I.S., Some signs of a difference in focus from the center, Proc. Uzbek A. Navoi Univ., 1951, no. 47, pp. 29–98.

  7. Cherkas, L.A., On conditions of the center for some equations of the form \(yy^{\prime }=P(x)+Q(x)y+R(x)y^2\), Differ. Uravn., 1972, vol. 8, no. 5, pp. 1435–1439.

    Google Scholar 

  8. Cherkas, L.A., The degree of focus roughness in the Liénard equation, Tr. Uzbek. Univ. im. A. Navoi, 1979, vol. 23. N 8, pp. 681–683.

    MATH  Google Scholar 

  9. Sadovskii, A.P., Solving the center and focus problems for the Liénard system with polynomial coefficients, Differ. Uravn., 1975, vol. 11, no. 11, pp. 2102–2104.

    Google Scholar 

  10. Gasull, A. and Torregrosa, J., Center problem for several differential equations via Cherkas’ method, J. Math. Anal. Appl., 1998, vol. 228, pp. 322–343.

    Article  MathSciNet  Google Scholar 

  11. Christopher, C., An algebraic approach to the classification of centers in polynomial Liénard systems, J. Math. Anal. Appl., 1999, vol. 229, pp. 319–329.

    Article  MathSciNet  Google Scholar 

  12. Sadovskii, A.P., Lüroth’s theorem and Cherkas’ method, Tr. Pyatoi mezhdunar. konf. “Analiticheskie metody analiza i differentsial’nykh uravnenii” (Proc. 5th Int. Conf. “Anal. Methods Anal. Differ. Equat.”) (Minsk, 2010), 2010, vol. 2, pp. 120–122.

  13. Yu, Z.H. and Zhang, W.N., Condition for polynomial Liénard centers, Sci. China Math., 2016, vol. 59, no. 3, pp. 411–424.

    Article  MathSciNet  Google Scholar 

  14. Giné, J., Center conditions for polynomial Liénard systems, Qualit. Theory Dyn. Syst., 2017, vol. 16, no. 1, pp. 119–126.

  15. Amel’kin, V.V. and Rudenok, A.E., Centers and isochronous centers of Liénard systems, Differ. Equations, 2019, vol. 55, no. 3, pp. 283–293.

    Article  MathSciNet  Google Scholar 

  16. Rudenok, A.E., Generalized symmetry of the Liénard system, Differ. Equations, 2019, vol. 55, no. 2, pp. 181–193.

    Article  MathSciNet  Google Scholar 

  17. Rudenok, A.E., Rational Liénard systems with a center and an isochronous center, Differ. Equations, 2020, vol. 56, no. 1, pp. 68–82.

    Article  MathSciNet  Google Scholar 

  18. Briskin, M., Pakovich, F., and Yomdin, Y., Algebraic geometry of the center focus problem for Abel differential equation, Ergodic Theory Dyn. Syst., 2016, vol. 36, no. 3, pp. 714–744.

    Article  MathSciNet  Google Scholar 

  19. Gavrilov, L., On the center-focus problem for the equation \({dy}/{dx}+\sum _{i=1}^na_i(x)y^i=0\), \(0\leq x\leq 1 \), where \(a_i \) are polynomials, Ann. Henri Lebesgue, 2020, vol. 3, pp. 615–648.

    Article  MathSciNet  Google Scholar 

  20. Álvarez, A., Bravo, J.L., Christopher, C., and Mardesić, P., Infinitesimal center problem on zero cycles and the composition conjecture, Funct. Anal. Appl., 2021, vol. 55, pp. 257–271.

  21. Moussu, R., Symétrie et forme normale des centers et foyers dégénérés, Ergodic Theory Dyn. Syst., 1982, vol. 2, pp. 241–251.

  22. Lyapunov, A.M., Sobr. soch. T. 2 (Collected Works. Vol. 2), Moscow–Leningrad: Izd. Akad. Nauk SSSR, 1956.

    Google Scholar 

  23. Chebotarev, N.G., Teoriya algebraicheskikh funktsii (Theory of Algebraic Functions), Moscow: Gos. Izd. Nauchn.-Tekh. Lit., 1948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Borukhov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borukhov, V.T. Algebraic Criterion for the Existence of a Center at a Monodromic Singular Point of a Polynomial Liénard System. Diff Equat 58, 1008–1020 (2022). https://doi.org/10.1134/S001226612208002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001226612208002X

Navigation