Skip to main content
Log in

Interval Approach to Solving Parametric Identification Problems for Dynamical Systems

  • NUMERICAL METHODS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We present an approach to solving parametric identification problems for dynamical systems. The approach is aimed at finding an interval estimate of the model parameters in which the solution of the corresponding modeling problem would contain the initial (experimental) data or minimize the deviation from them. The approach is based on an earlier-developed, tested, and justified adaptive interpolation algorithm for modeling dynamical systems with interval parameters. The problem of minimizing the distance between the solution of the interval problem and the experimental values of the phase variables in the space of bounds of the interval estimates of the model parameters is formulated. An expression for the gradient of the objective function to be minimized is obtained for further application of first-order optimization methods. The proposed approach is tested on a representative set of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Samarskii, A.A. and Vabishchevich, P.N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki (Numerical Methods for Solving Inverse Problems of Mathematical Physics), Moscow: LKI, 2009.

  2. Denisov, A.M., Vvedenie v teoriyu obratnykh zadach (Introduction to the Theory of Inverse Problems), Moscow: Izd. Mosk. Gos. Univ., 1994.

    Google Scholar 

  3. Marchuk, G.I., Sopryazhennye uravneniya i analiz slozhnykh sistem (Adjoint Equations and Analysis of Complex Systems), Moscow: Nauka, 1992.

    MATH  Google Scholar 

  4. Vatulyan, A.O., Mathematical models and inverse problems, Sorosovskii Obrazov. Zh., 1998, no. 11, pp. 143–148.

  5. Denisov, A.M., Iterative method for solving an inverse coefficient problem for a hyperbolic equation, Differ. Equations, 2017, vol. 53, no. 7, pp. 916–922.

    Article  MathSciNet  Google Scholar 

  6. Gavrilov, S.V. and Denisov, A.M., Numerical solution methods for a nonlinear operator equation arising in an inverse coefficient problem, Differ. Equations, 2021, vol. 57, no. 7, pp. 868–875.

    Article  MathSciNet  Google Scholar 

  7. Ashurov, R.R. and Mukhiddinova, A.T., Inverse problem of determining the heat source density for the subdiffusion equation, Differ. Equations, 2020, vol. 56, no. 12, pp. 1550–1563.

    Article  MathSciNet  Google Scholar 

  8. Diligenskaya, A.N. and Samokish, A.V., Parametric identification in inverse heat conduction problems under conditions of interval uncertainty based on neural networks, Vestn. Samar. Gos. Tekh. Univ., 2020, vol. 28, no. 4 (68), pp. 6–18.

    Google Scholar 

  9. Petrikevich Ya.I., Structural-parametric identification of dynamical objects by interval initial data, Cand. Sci. (Eng.) Dissertation, Moscow, 2006.

  10. Xiao, N., Fedele, F., and Muhanna, R.L., Inverse problems under uncertainties—an interval solution for the beam finite element, 11th Int. Conf. Struct. Saf. & Reliab., New York, 2013. .

  11. Nenarokomov, A.V., Alifanov, O.M., Krainova, I.V., Titov, D.M., and Morzhukhina, A.V., Estimation of environmental influence on spacecraft materials radiative properties by inverse problems technique, Acta Astronaut., 2019, vol. 160, pp. 323–330.

    Article  Google Scholar 

  12. Kabanikhin, S.I., Kulikov, I.M., and Shishlenin, M.A., An algorithm for recovering the characteristics of the initial state of supernova, Comput. Math. Math. Phys., 2020, vol. 60, no. 6, pp. 1008–1016.

    Article  MathSciNet  Google Scholar 

  13. Abgaryan, K.K., Noskov, R.G., and Reviznikov, D.L., The inverse coefficient problem of heat transfer in layered nanostructures, Izv. VUZov. Mater. Elektron. Tekh., 2017, vol. 20, no. 3, pp. 213–219.

    Google Scholar 

  14. Moore, R., Interval Analysis, Englewood Cliffs: Prentice-Hall, 1966.

    MATH  Google Scholar 

  15. Moore, R.E., Kearfott, R.B., and Cloud, M.J., Introduction to Interval Analysis, Philadelphia: SIAM, 2009.

  16. Sharyi, S.P., Konechnomernyi interval’nyi analiz (Finite-Dimensional Interval Analysis), Novosibirsk: XYZ, 2019.

    Google Scholar 

  17. Morozov, A.Yu. and Reviznikov, D.L., Adaptive interpolation algorithm based on a kd-tree for numerical integration of systems of ordinary differential equations with interval initial conditions, Differ. Equations, 2018, vol. 54, no. 7, pp. 945–956.

    Article  MathSciNet  Google Scholar 

  18. Makino, K. and Berz, M., Models and their applications, Numerical Software Verification, (Heidelberg, July 22–23, 2017), pp. 3–13.

  19. Nataraj, P.S.V. and Sondur, S., The extrapolated Taylor model, Reliable Computing, (July 2011), pp. 251–278.

  20. Rogalev, A.N., Guaranteed methods for solving systems of ordinary differential equations based on the transformation of symbolic formulas, Vychisl. Tekhnol., 2003, vol. 8, no. 5, pp. 102–116.

    MATH  Google Scholar 

  21. Fu, C., Ren, X., Yang, Y.-F., Lu, K., and Qin, W., Steady-state response analysis of cracked rotors with uncertain but bounded parameters using a polynomial surrogate method, Commun. Nonlinear Sci. Numer. Simul., 2019, vol. 68, pp. 240–256.

    Article  MathSciNet  Google Scholar 

  22. Fu, C., Xu, Y., Yang, Y., Lu, K., Gu, F., and Ball, A., Response analysis of an accelerating unbalanced rotating system with both random and interval variables, J. Sound Vib., 2020, vol. 466, p. 115047.

    Article  Google Scholar 

  23. Morozov, A.Yu., Reviznikov, D.L., and Gidaspov, V.Yu., Adaptive interpolation algorithm based on a kd-tree for the problems of chemical kinetics with interval parameters, Math. Models Comput. Simul., 2019, vol. 11, no. 4, pp. 622–633.

    Article  MathSciNet  Google Scholar 

  24. Morozov, A.Yu., Zhuravlev, A.A., and Reviznikov, D.L., Analysis and optimization of an adaptive interpolation algorithm for the numerical solution of a system of ordinary differential equations with interval parameters, Differ. Equations, 2020, vol. 56, no. 7, pp. 935–949.

    Article  MathSciNet  Google Scholar 

  25. Gidaspov, V.Yu., Morozov, A.Yu., and Reviznikov, D.L., Adaptive interpolation algorithm using TT-decomposition for modeling dynamical systems with interval parameters, Comput. Math. Math. Phys., 2021, vol. 61, no. 9, pp. 1387–1400.

    Article  MathSciNet  Google Scholar 

  26. Morozov, A.Yu., Zhuravlev, A.A., and Reviznikov, D.L., Sparse grid adaptive interpolation in problems of modeling dynamic systems with interval parameters, Mathematics, 2021, vol. 9, p. 298.

  27. Morozov, A.Yu. and Reviznikov, D.L., Adaptive interpolation algorithm on sparse meshes for numerical integration of systems of ordinary differential equations with interval uncertainties, Differ. Equations, 2021, vol. 57, no. 7, pp. 947–958.

    Article  MathSciNet  Google Scholar 

  28. Smolyak, S.A., Quadrature and interpolation formulas on tensor products of some classes of functions, Dokl. Akad. Nauk SSSR, 1963, vol. 148, no. 5, pp. 1042–1045.

    MathSciNet  MATH  Google Scholar 

  29. Bungatrz, H.-J. and Griebel, M., Sparse grids, Acta Numerica, 2004, vol. 13, no. 1, pp. 147–269.

    MathSciNet  MATH  Google Scholar 

  30. Gerstner, T. and Griebel, M., Sparse grids, Encyclopedia of Quantitative Finance, Cont, R., Ed., New York, 2010.

  31. Oseledets, I.V., Tensor-train decomposition, SIAM J. Sci. Comput., 2011, vol. 33, no. 5. pp. 2295–2317.

  32. Oseledets, I. and Tyrtyshnikov, E., TT-cross approximation for multidimensional arrays, Linear Algebra Appl., 2010, vol. 432, no. 1, pp. 70–88.

  33. Gill, Ph., Murray, W., and Wright, M., Practical Optimization, London–New York: Academic Press, 1981. Translated under the title: Prakticheskaya optimizatsiya, Moscow: Mir, 1985.

  34. Panteleev, A.V. and Letova, T.A., Metody optimizatsii v primerakh i zadachakh (Optimization Methods in Exercises and Problems), Moscow: Vyssh. Shkola, 2005.

  35. Arnol’d, V.I., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Izhevsk: Regulyarnaya Khaoticheskaya Din., 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Morozov or D. L. Reviznikov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.Y., Reviznikov, D.L. Interval Approach to Solving Parametric Identification Problems for Dynamical Systems. Diff Equat 58, 952–965 (2022). https://doi.org/10.1134/S0012266122070084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266122070084

Navigation