Skip to main content
Log in

Adaptive Interpolation Algorithm on Sparse Meshes for Numerical Integration of Systems of Ordinary Differential Equations with Interval Uncertainties

  • NUMERICAL METHODS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider the theoretical aspects of generalization of the adaptive interpolation algorithm to the case of a large number of interval uncertainties with the use of sparse grids. The classical adaptive interpolation algorithm essentially constructs an adaptive hierarchical partition of the uncertainty domain into subdomains each of which corresponds to a polynomial function of some degree interpolating the dependence of the solution of the problem on the point values of interval parameters with a given accuracy. The main disadvantage of the algorithm is its exponential dependence on the number of interval parameters. Already in the presence of five to six interval uncertainties, the algorithm becomes practically inapplicable. In this regard, it is proposed to use interpolation on adaptive sparse meshes instead of interpolation on a regular mesh; in some cases, this permits considerably expanding the scope of the algorithm. An estimate is produced for the global error of the algorithm on sparse meshes. The linear dependence of the global algorithm error on the mesh level is shown. The efficiency of our approach is demonstrated on a representative series of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mozokhina, A.S. and Mukhin, S.I., Some exact solutions of the problem of liquid flow in a contracting or expanding vessel, Mat. Model., 2019, vol. 31, no. 3, pp. 124–140.

    MATH  Google Scholar 

  2. Moore, R., Interval Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1966.

    MATH  Google Scholar 

  3. Moore, R.E., Kearfott, R.B., and Cloud, M.J., Introduction to Interval Analysis, Philadelphia, PA: SIAM, 2009.

    Book  Google Scholar 

  4. Sharyi, S.P., Konechnomernyi interval’nyi analiz (Finite-Dimensional Interval Analysis), Novosibirsk: XYZ, 2019.

    Google Scholar 

  5. Eijgenraam, P., The Solution of Initial Value Problems Using Interval Arithmetic. Math. Centre Tracts. No. 144 , Amsterdam: Stichting Math. Centrum, 1981.

    MATH  Google Scholar 

  6. Lohner, R.J., Enclosing the solutions of ordinary initial and boundary value problems, Comput. Arithmetic Sci. Comput. Program. Lang., 1987, pp. 255–286.

  7. Chernous’ko, F.L., Otsenivanie fazovykh sostoyanii dinamicheskikh sistem. Metod ellipsoidov (Estimation of Phase States of Dynamical Systems. Method of Ellipsoids), Moscow: Nauka, 1988.

    Google Scholar 

  8. Makino, K. and Berz, M., Models and their applications, Numerical Software Verification 2017 (Heidelberg, July 22–23, 2017), Heidelberg: Springer, 2017, pp. 3–13.

  9. Nataraj, P.S.V. and Sondur, S., The extrapolated Taylor model, Reliable Computing (July 2011), pp. 251–278.

  10. Rogalev, A.N., Guaranteed methods for the solution of ordinary differential equations on the basis of transformation of analytical formulas, Vychisl. Tekhnol., 2003, vol. 8, no. 5, pp. 102–116.

    MATH  Google Scholar 

  11. Morozov, A.Yu. and Reviznikov, D.L., Metody komp’yuternogo modelirovaniya dinamicheskikh sistem s interval’nymi parametrami (Methods of Computer Modeling of Dynamical Systems with Interval Parameters), Moscow: Izd. Mosk. Aviats. Inst., 2019.

    Google Scholar 

  12. Sauer, T. and Xu, Y., On multivariate Lagrange interpolation, Math. Comput., 1995, vol. 64, no. 211, pp. 1147–1170.

    Article  MathSciNet  Google Scholar 

  13. Morozov, A.Yu. and Reviznikov, D.L., Adaptive interpolation algorithm based on a kd-tree for numerical integration of systems of ordinary differential equations with interval initial conditions, Differ. Equations, 2018, vol. 54, no. 7, pp. 945–956.

    Article  MathSciNet  Google Scholar 

  14. Morozov, A.Yu., Reviznikov, D.L., and Gidaspov, V.Yu., kd-Tree based adaptive interpolation algorithm for chemical kinetics problems with interval parameters, Mat. Model., 2018, vol. 30, no. 12, pp. 129–144.

    MATH  Google Scholar 

  15. Morozov, A.Yu. and Reviznikov, D.L., Modelling of dynamic systems with interval parameters on graphic processors, Program. Ingeneria, 2019, vol. 10, no. 2, pp. 69–76.

    Article  Google Scholar 

  16. Khoirudin and Shun-Liang, J., Gpu application in cuda memory, Adv. Comput. Int. J., 2015, vol. 6, no. 2, pp. 1–10.

    Article  Google Scholar 

  17. Morozov, A.Yu. and Reviznikov, D.L., Modeling of dynamic systems with interval parameters in the presence of singularities, Russ. J. Nonlinear Dyn., 2020, vol. 16, no. 3, pp. 479–490.

    MathSciNet  MATH  Google Scholar 

  18. Morozov, A.Yu., Zhuravlev, A.A., and Reviznikov, D.L., Analysis and optimization of an adaptive interpolation algorithm for the numerical solution of a system of ordinary differential equations with interval parameters, Differ. Equations, 2020, vol. 56, no. 7, pp. 960–974.

    Article  MathSciNet  Google Scholar 

  19. Morozov, A.Yu., Zhuravlev, A.A., and Reviznikov, D.L., Sparse grid adaptive interpolation in problems of modeling dynamic systems with interval parameters, Mathematics, 2021, vol. 9, no. 4, p. 298.

    Article  Google Scholar 

  20. Smolyak, S.A., Quadrature and interpolation formulas on tensor products of some classes of functions, Dokl. Akad. Nauk SSSR, 1963, vol. 148, no. 5, pp. 1042–1045.

    MathSciNet  MATH  Google Scholar 

  21. Gerstner, T. and Griebel, M., Sparse grids, in Encyclopedia of Quantitative Finance, Cont, R., Ed., New York: Wiley, 2010.

  22. Garcke, J., Sparse grids in a nutshell. Sparse grids and applications, in Lecture Notes in Computational Science and Engineering. Vol. 88 , Berlin–Heidelberg: Springer, 2013, pp. 57–80.

  23. Brumm, J. and Scheidegger, S., Using adaptive sparse grids to solve high-dimensional dynamic models, Econometrica, 2017, vol. 85, no. 5, pp. 1575–1612.

    Article  MathSciNet  Google Scholar 

  24. Bungatrz, H.-J. and Griebel, M., Sparse grids, Acta Numerica, 2004, vol. 13, no. 1, pp. 147–269.

    MathSciNet  MATH  Google Scholar 

  25. Judd, K.L., Maliar, L., Maliar, S., and Valero, R., Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain, J. Econ. Dyn. Control, 2014, vol. 44, pp. 92–123.

    Article  MathSciNet  Google Scholar 

  26. Niesen, J. and Hall, T., On the Global Error of Discretization Methods for Ordinary Differential Equations, Cambridge, 2004.

  27. Arnold, V.I., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Moscow: MTsNMO, 2012.

    Google Scholar 

Download references

Funding

This work was financially supported by the RF Ministry of Science and Higher Education, project no. 075-15-2020-799.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Morozov or D. L. Reviznikov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.Y., Reviznikov, D.L. Adaptive Interpolation Algorithm on Sparse Meshes for Numerical Integration of Systems of Ordinary Differential Equations with Interval Uncertainties. Diff Equat 57, 947–958 (2021). https://doi.org/10.1134/S0012266121070107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266121070107

Navigation