Skip to main content
Log in

Stability Issues in Two-Dimensional Mathematical Models of Plasma Equilibrium in Magnetic Galathea Traps

  • NUMERICAL METHODS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

Galathea traps for confining plasma in a magnetic field created by current-carrying conductors immersed in the plasma volume constitute a promising class of objects for development in the field of controlled thermonuclear fusion. After describing the main properties and quantitative characteristics of the traps, the central problem is to study the stability of equilibrium magnetoplasma configurations. Mathematical modeling and calculations performed in terms of the differential equations of magnetohydrodynamics play an essential role here. These equations are described using the example of a toroidal “Galathea belt” trap straightened into a cylinder. The article presents its plasmastatic model and several approaches to studying the stability of configurations: the convergence of iterative methods for establishing equilibrium in two-dimensional models, a brief survey of the research into the magnetohydrodynamic stability of one-dimensional configurations surrounding a straight current-carrying conductor, and a rigorous study of the stability of configurations with respect to two-dimensional perturbations in the linear approximation. Stability criteria and their relationship to each other are obtained numerically in various approximations. Ways of generalizing the results to three-dimensional perturbations are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Morozov, A.I., Galathea—plasma confinement systems in which the conductors are immersed in the plasma, Sov. J. Plasma Phys., 1992, vol. 18, no. 3, pp. 159–165.

    Google Scholar 

  2. Morozov, A.I. and Pustovitov, V.D., Stellarator with levitating windings, Sov. J. Plasma Phys., 1991, vol. 17, p. 740.

    Google Scholar 

  3. Morozov, A.I. and Frank, A.G., Galateya toroidal multipole trap with azimuthal current, Plasma Phys. Rep., 1994, vol. 20, pp. 879–886.

    Google Scholar 

  4. Morozov, A.I., Bugrova, A.I., Bishaev, A.M., Lipatov, A.S., and Kozintseva, M.V., Plasma parameters in the upgraded Trimyx-M Galathea, Tech. Phys., 2007, vol. 52, no. 12, pp. 1546–1551.

    Article  Google Scholar 

  5. Brushlinskii, K.V., Zueva, N.M., Mikhailova, M.S., Morozov, A.I., Pustovitov, V.D., and Tuzova, N.B., Numerical simulation for straight helical sheaths with conductors immersed in plasma, Plasma Phys. Rep., 1994, vol. 20, no. 3, pp. 257–264.

    Google Scholar 

  6. Brushlinskii, K.V. and Ignatov, P.A., A plasmastatic model of the Galathea-belt magnetic trap, Comput. Math. Math. Phys., 2010, vol. 50, no. 12, pp. 2071–2081.

    Article  MathSciNet  Google Scholar 

  7. Brushlinskii, K.V. and Kondrat’ev, I.A., Comparative analysis of plasma equilibrium computations in toroidal and cylindrical magnetic traps, Math. Model. Comput. Simul., 2019, vol. 11, no. 1, pp. 122–132.

    Article  Google Scholar 

  8. Tao, B., Jin, X., Li, Z., and Tong, W., Equilibrium configuration reconstruction of multipole Galatea magnetic trap based on magnetic measurement, IEEE Trans. Plasma Sci., 2019, vol. 47, no. 7, pp. 3114–3123.

    Article  Google Scholar 

  9. Morozov, A.I. and Savel’ev, V.V., On Galateas—magnetic traps with plasma-embedded conductors, Phys.-Usp., 1998, vol. 41, no. 11, pp. 1049–1089.

    Article  Google Scholar 

  10. Brushlinskii, K.V., Matematicheskie i vychislitel’nye zadachi magnitnoi gazodinamiki (Mathematical and Computational Problem of Magnetohydrodynamics), Moscow: BINOM. Lab. Znanii, 2009.

    Google Scholar 

  11. Brushlinskii, K.V., Matematicheskie osnovy vychislitel’noi mekhaniki zhidkosti, gaza i plazmy (Mathematical Foundations of Computational Mechanics of Fluid, Gas, and Plasma), Dolgoprudnyi: Intellekt, 2017.

    Google Scholar 

  12. Shafranov, V.D., On magnetohydrodynamic equilibrium configurations, Sov. Phys. JETP, 1958, vol. 6, pp. 545–554.

    MathSciNet  MATH  Google Scholar 

  13. Grad, H. and Rubin, H., Hydrodynamic equilibria and force-free fields, Proc. 2nd U. N. Int. Conf. Peaceful Uses At. Energy. Geneva, 1958, vol. 31, pp. 190–197.

    Google Scholar 

  14. Shafranov, V.D., Plasma equilibrium in a magnetic field, in Rev. Plasma Phys., Leontovich, M.A., Ed., New York, 1966, no. 2, pp. 103–152.

  15. Kadomtsev, B.B., Hydromagnetic stability of a plasma, in Rev. Plasma Phys., Leontovich, M.A., Ed., New York, 1966, no. 2, pp. 153–206.

  16. Solov’ev, L.S., Hydromagnetic stability of closed plasma configurations, in Voprosy teorii plazmy. Vyp. 6 (Plasma Theory Issues. Issue 2), Leontovich, M.A., Ed., Moscow: Atomizdat, 1972, pp. 210–290.

    Google Scholar 

  17. Bateman, G., MHD Instability, Cambridge, MA–London: The MIT Press, 1979. Translated under the title: MGD Neustoichivosti, Moscow: Atomizdat, 1982.

    Google Scholar 

  18. Medvedev, S.Yu., Martynov, A.A., Drozdov, V.V., Ivanov, A.A., Poshekhonov, Yu.Yu., Konovalov, S.V., and Villard, L., MHD stability and energy principle for two-dimensional equilibria without assumption of nested magnetic surfaces, Plasma Phys. Rep., 2019, vol. 45, no. 2, pp. 108–120.

    Article  Google Scholar 

  19. Brushlinskii, K.V., Two approaches to the stability problem for plasma equilibrium in a cylinder, J. Appl. Math. Mech., 2001, vol. 65, no. 2, pp. 229–236.

    Article  MathSciNet  Google Scholar 

  20. Brushlinskii, K.V., Krivtsov, S.A., and Stepin, E.V., On the stability of plasma equilibrium in the neighborhood of a straight current conductor, Comput. Math. Math. Phys., 2020, vol. 60, no. 4, pp. 686–696.

    Article  MathSciNet  Google Scholar 

  21. Brushlinskii, K.V. and Stepin, E.V., Mathematical models of equilibrium configurations of plasma surrounding current-carrying conductors, Differ. Equations, 2020, vol. 56, no. 7, pp. 872–881.

    Article  MathSciNet  Google Scholar 

  22. Brushlinskii, K.V. and Stepin, E.V., Mathematical model and stability investigation of plasma equilibrium around a current-carrying conductor, J. Phys.: Conf. Ser., 2020, vol. 1686, p. 012030.

    Google Scholar 

  23. Brushlinskii, K.V. and Stepin, E.V., Plasma equilibrium and stability in a current-carrying conductor vicinity, J. Phys.: Conf. Ser., 2020, vol. 1640, p. 012018.

    Google Scholar 

  24. Peaceman, D.W. and Rachford, H.H., The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 1955, vol. 3, no. 1, pp. 28–42.

    Article  MathSciNet  Google Scholar 

  25. Douglas, J., On the numerical integration of \(\partial ^2 u /\partial x^2+\partial ^2 u /\partial y^2=\partial u /\partial t \) by implicit method, J. Soc. Ind. Appl. Math., 1955, vol. 3, no. 1, pp. 42–65.

    Article  Google Scholar 

  26. Arsenin, V.Ya., Metody matematicheskoi fiziki i spetsial’nye funktsii (Methods of Mathematical Physics and Special Functions), Moscow: Nauka, 1984.

    Google Scholar 

  27. Vedenov, A.A., Velikhov, E.P., and Sagdeev, R.Z., Stability of plasma, Sov. Phys. Usp., 1961, vol. 4, no. 2, pp. 332–369.

    Article  MathSciNet  Google Scholar 

  28. Bernstein, I.B., Frieman, E.A., Kruskal, M.D., and Kulsrud, R.M., Energy principle for the hydromagnetic stability problem, Proc. R. Soc., 1958, vol. 244, pp. 17–50.

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Moscow Center for Fundamental and Applied Mathematics, Agreement with the Ministry of Science and Higher Education of the Russian Federation no. 075-15-2019-1623.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. V. Brushlinskii or E. V. Stepin.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brushlinskii, K.V., Stepin, E.V. Stability Issues in Two-Dimensional Mathematical Models of Plasma Equilibrium in Magnetic Galathea Traps. Diff Equat 57, 835–847 (2021). https://doi.org/10.1134/S0012266121070016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266121070016

Navigation