Skip to main content
Log in

Generalized Holmgren Problem for an Elliptic Equation with Several Singular Coefficients

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

It has recently been established that all fundamental solutions of a multidimensional singular elliptic equation can be expressed via the well-known multivariate Lauricella hypergeometric function. In the present paper, we prove that the generalized Holmgren problem for an elliptic equation with several singular coefficients has a unique solution and find this solution in closed form. When finding the solution, we use decomposition formulas and some contiguous relationships for the multivariate Lauricella hypergeometric function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Smirnov, M.M., Vyrozhdayushchiesya ellipticheskie i giperbolicheskie uravneniya (Degenerating Elliptic and Hyperbolic Equations), Moscow: Nauka, 1966.

    Google Scholar 

  2. Hasanov, A., Fundamental solutions of bi-axially symmetric Helmholtz equation, Complex Var. Elliptic Equat., 2007, vol. 52, no. 8, pp. 673–683.

    Article  MathSciNet  MATH  Google Scholar 

  3. Salakhitdinov, M.S. and Khasanov, A., Tricomi problem for a mixed type equation with a nonsmooth degeneration line, Differ. Uravn., 1983, vol. 19, no. 1, pp. 110–119.

    MATH  Google Scholar 

  4. Amanov, D., Some boundary value problems for a degenerating elliptic equation in an unbounded domain, Izv. Akad. Nauk UzSSR. Ser. Fiz.-Mat. Nauk, 1984, no. 1, pp. 8–13.

  5. Amanov, D., Boundary value problem for equation \(\mathrm{sgn}\, y|y|^m u_{xx}+x^nu_{yy}=0 \) in an unbounded domain, Izv. Akad. Nauk UzSSR. Ser. Fiz.-Mat. Nauk, 1984, no. 2, pp. 8–10.

  6. Agostinelli, C., Integrazione dell’equazione differenziale \( u_{xx}+u_{yy}+u_{zz}+x^{-1}u_x=0\) e problema analogo a quello di Dirichlet per un campo emisferico, Atti Accad. Naz. Lincei, 1937, vol. 6, no. 26, pp. 7–8.

    Google Scholar 

  7. Karimov, E.T. and Nieto, J.J., The Dirichlet problem for a 3D elliptic equation with two singular coefficients, Comput. Math. Appl., 2011, vol. 62, pp. 214–224.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hasanov, A. and Karimov, E.T., Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients, Appl. Math. Lett., 2009, vol. 22, pp. 1828–1832.

    Article  MathSciNet  MATH  Google Scholar 

  9. Karimov, E.T., On a boundary problem with Neumann’s condition for 3D singular elliptic equations, Appl. Math. Lett., 2010, vol. 23, pp. 517–522.

    Article  MathSciNet  MATH  Google Scholar 

  10. Nieto, J.J. and Karimov, E.T., On an analogue of the Holmgren’s problem for 3D singular elliptic equation, Asian-Eur. J. Math., 2012, vol. 5, no. 2, pp. 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  11. Salakhitdinov, M.S. and Karimov, E.T., Spatial boundary problem with the Dirichlet–Neumann condition for a singular elliptic equation, Appl. Math. Comput., 2012, vol. 219, pp. 3469–3476.

    MathSciNet  MATH  Google Scholar 

  12. Karimov, E.T., On the Dirichlet problem for a three-dimensional elliptic equation with singular coefficients, Dokl. Akad. Nauk Uzb., 2010, vol. 2, pp. 9–11.

    Google Scholar 

  13. Karimov, E.T., Boundary value problem for a three-dimensional elliptic equation with singular coefficients, Uzb. Mat. Zh., 2010, no. 2, pp. 56–66.

  14. Olevskii, M.N., Solution of the Dirichlet problem referring to the equation \(\Delta u+px_n^{-1} u_{x_n}=f\) for a semispherical domain, Dokl. Akad. Nauk SSSR, 1949, vol. 64, no. 6, pp. 767–770.

    Google Scholar 

  15. Quinn, D.W. and Weinacht, R.J., Boundary value problems in generalized biaxially symmetric potential theory, J. Differ. Equat., 1976, vol. 21, pp. 113–133.

    Article  MathSciNet  Google Scholar 

  16. Quinn, D.W., Exterior Dirichlet and Neumann problems in generalized biaxially symmetric potential theory, J. Differ. Equat., 1978, vol. 29, pp. 167–179.

    Article  MathSciNet  MATH  Google Scholar 

  17. Salakhitdinov, M.S. and Khasanov, A., To the theory of multidimensional Gellerstedt equation, Uzbek. Mat. Zh., 2007, no. 3, pp. 95–109.

  18. Nazipov, I.T., Solution of the spatial Tricomi problem for a singular mixed-type equation by the method of integral equations, Russ. Math., 2011, vol. 55, no. 3, pp. 61–76.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ergashev, T.G., Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients, J. Sib. Fed. Univ. Math. Phys., 2020, vol. 13, no. 1, pp. 48–57.

    Article  Google Scholar 

  20. Ergashev, T.G., The Dirichlet problem for elliptic equation with several singular coefficients, e-J. Anal. Appl. Math., 2018, no. 1, pp. 81–99.

  21. Bateman, H. and Erdélyi, A., Higher Transcendental Functions, New York: McGraw-Hill Book Co., 1953. Translated under the title: Vysshie transtsendentnye funktsii. T. 1., Moscow: Nauka, 1973.

    MATH  Google Scholar 

  22. Lauricella, G., Sulle funzione ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo, 1893, vol. 7, pp. 111–158.

    Article  MATH  Google Scholar 

  23. Appell, P. and Kampé de Fériet, J., Fonctions Hypergéométriques et Hypersphériques. Polynomes d’Hermite, Paris: Gautier Villars, 1926.

    MATH  Google Scholar 

  24. Burchnall, J.L. and Chaundy, T.W., Expansions of Appell’s double hypergeometric functions, Quart. J. Math. (Oxford) Ser. 11 , 1940, pp. 249–270.

  25. Burchnall, J.L. and Chaundy, T.W., Expansions of Appell’s double hypergeometric functions (II), Quart. J. Math. (Oxford) Ser. 12 , 1941, pp. 112–128.

  26. Hasanov, A. and Srivastava, H.M., Some decomposition formulas associated with the Lauricella function \(F_A^{(r)}\) and other multiple hypergeometric functions, Appl. Math. Lett., 2006, vol. 19, no. 2, pp. 113–121.

    MathSciNet  MATH  Google Scholar 

  27. Mikhlin, S.G., Kurs matematicheskoi fiziki (Course of Mathematical Physics), Moscow: Nauka, 1968.

    Google Scholar 

  28. Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow: Fizmatgiz, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Ergashev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergashev, T.G. Generalized Holmgren Problem for an Elliptic Equation with Several Singular Coefficients. Diff Equat 56, 842–856 (2020). https://doi.org/10.1134/S0012266120070046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266120070046

Navigation