Differential Equations

, Volume 55, Issue 1, pp 113–119 | Cite as

Study of the Continuous-Time Open Dynamic Leontief Model as a Linear Dynamical Control System

  • N. G. PavlovaEmail author
Control Theory


We study the topological properties of the technology set (the set of all technologically admissible net production output vectors) in the continuous-time dynamic Leontief model in which the control is a function of unproductive consumption. Necessary conditions for the technology set to be closed are obtained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leontief, W., Die Bilanz der russischen Volkswirtschaft. Eine methodologische Untersuchung, Weltwirtschaft. Archiv., 1925, vol. 22, no. 2 (Oktober), pp. 338–344.Google Scholar
  2. 2.
    Leontief, W., Structure of the World Economy. Lecture to the Memory of Alfred Nobel. December, 11, 1973.Google Scholar
  3. 3.
    Shatilov, N.F., Modelirovanie rasshirennogo vosproizvodstva (Modeling of Extended Reproduction), Moscow: Ekonomika, 1967.Google Scholar
  4. 4.
    Veduta, N.I., Ekonomicheskaya kibernetika (Economical Cybernetics), Minsk: Nauka i Tekhnika, 1971.Google Scholar
  5. 5.
    Belykh, A.A., Istoriya rossiiskikh ekonomiko-matematicheskikh issledovanii. Pervye sto let (History of Russian Economical-Mathematical Research. The First Hundred Years), Moscow: URSS, 2007.Google Scholar
  6. 6.
    Arutyunov, A.V. and Pavlova, A.V., Topological properties of attainability sets of linear systems, Differ. Equations, 2004, vol. 40, no. 2, pp. 1645–1648.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arutyunov, A.V., Second-order conditions in extremal problems. The abnormal points, Trans. Amer. Math. Soc., 1998, vol. 350, no. 11, pp. 4341–4365.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hawkins, D. and Simon, H.A., Some conditions of macroeconomic stability, Econometrica, 1949, vol. 17 (3/4), pp. 245–248.Google Scholar
  9. 9.
    Arutyunov, A.V., Pavlova, N.G., and Shananin, A.A., New conditions for the existence of equilibrium prices, Yugosl. J. Oper. Res., 2018, vol. 28, no. 1, pp. 59–77.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Arutyunov, A.V., Zhukovskiy, S.E., and Pavlova, N.G., Equilibrium price as a coincidence point of two mappings, Comput. Math. Math. Phys., 2013, vol. 53, no. 2, pp. 158–169.MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Trapeznikov Institute of Control Sciences of the Russian Academy of SciencesMoscowRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations