Differential Equations

, Volume 54, Issue 4, pp 551–556 | Cite as

Krein Extension of an Even-Order Differential Operator

  • Ya. I. Granovskyi
  • L. L. Oridoroga
Short Communications


We describe the Krein extension of the minimal operator associated with the expression A:= (−1) n d2n/dx2n on the interval [a, b] in terms of boundary conditions. We also describe all nonnegative extensions of the operator A and extensions with finitely many negative squares.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhiezer, N.I. and Glazman, I.M., Teoriya lineinykh operatorov v gil’bertovom prostranstve (Theory of Linear Operators in Hilbert Space), Moscow: Nauka, 1966.zbMATHGoogle Scholar
  2. 2.
    Krein, M.G., Theory of self-adjoint extensions of semibounded Hermitian operators and its applications. I, II, Mat. Sb., 1947, no. 20, pp. 431–495; no. 21, pp. 365–404.zbMATHGoogle Scholar
  3. 3.
    Derkach, V.A. and Malamud, M.M., Generalized resolvent and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal., 1991, vol. 95, no. 1, pp. 1–95.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kalf, H., A Characterization of the Friedrichs extension of Sturm–Liouville operators, J. London Math. Soc., 1978, vol. 17, no. 2, pp. 511–521.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Eckhardt, J., Gesztesy, F., Nichols, R., and Teschl, G., Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials, Opuscula Math., 2013, vol. 33, no. 3, pp. 467–563.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ashbaugh, M.S., Gesztesy, F., Mitrea, M., et al., The Krein–von Neumann extension, its connection to an abstract buckling problem, Math. Nachr., 2010, vol. 283, no. 2, pp. 165–179.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Malamud, M.M., Spectral theory of elliptic operators in exterior domains, Russ. J. Math. Phys., 2010, vol. 17, pp. 96–125.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gesztesy, F. and Mitrea, M., A description of all self-adjoint extensions of the Laplacian and Krein-type resolvent formulas on non-smooth domains, J. Anal. Math., 2011, vol. 113, pp. 53–172.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ashbaugh, M.S., Gesztesy, F., Mitrea, M., and Teschl, G., Spectral theory for perturbed Krein Laplacians in nonsmooth domains, Adv. Math., 2010, vol. 223, pp. 1372–1467.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bruneau, L., Dereziński, J., and Georgescu, V., Homogeneous Schrödinger operators on half-line, Ann. Henri Poincaré, 2011, vol. 12, pp. 547–590.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ananieva, A.Yu. and Budyika, V.S., To the spectral theory of the Bessel operator on finite interval and half-line, J. Math. Sci., 2015, vol. 211, no. 5, pp. 624–645.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lunyov, A.A., Spectral functions of the simplest even order ordinary differential operator, J. Methods Funct. Anal. Topology, 2013, vol. 19, no. 4, pp. 319–326.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gorbachuk, V.I. and Gorbachuk, M.L., Granichnye zadachi dlya differential’no-operatornykh uravnenii (Boundary Value Problems for Operator-Differential Equations), Kiev: Naukova Dumka, 1984.zbMATHGoogle Scholar
  14. 14.
    Rofe-Beketov, F.S., Self-adjoint extensions of differential operators in a space of vector functions, Soviet Math. Dokl., 1969, vol. 10, pp. 188–192.zbMATHGoogle Scholar
  15. 15.
    Derkach, V.A. and Malamud, M.M., Characteristic functions of almost solvable extensions of Hermitian operators, Ukrain. Math. J., 1992, vol. 44, no. 4, pp. 379–401.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Applied Mathematics and MechanicsDonetskUkraine
  2. 2.Donetsk National UniversityDonetskUkraine

Personalised recommendations