Skip to main content
Log in

Stability of Steady-State Solutions of Systems of Nonlinear Nonautonomous Delay Differential Equations

  • Ordinary Differential Equations
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

Sufficient conditions for the stability of steady-state solutions of systems of nonautonomous linear and nonlinear differential equations with time-dependent delay are obtained in terms of coefficients. These sufficient conditions are written as inequalities relating quantities that can be calculated directly from the right-hand side of the system of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Volterra, V., Leçons sur la théorie mathématique de la lutte pour la vie, Paris: Gauthier-Villars, 1931. Translated under the title Matematicheskaya teoriya bor’by za sushchestvovanie, Moscow: Nauka, 1976.

    MATH  Google Scholar 

  2. Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations, New York: Dover, 1959. Translated under the title Teoriya funktsionalov, integral’nykh i integro-differentsial’nykh uravnenii, Moscow: Nauka, 1982.

    MATH  Google Scholar 

  3. Krasovskii, N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya (Several Problems of the Theory of Stability of Motion), Moscow: Nauka, 1959.

    Google Scholar 

  4. Bellman, R. and Cooke, K., Differential-Difference Equations, New York: Academic, 1963. Translated under the title Differentsial’no-raznostnye uravneniya, Moscow: Mir, 1967.

    MATH  Google Scholar 

  5. Myshkis, A.D., Lineinye differentsial’nye uravneniya s zapazdyvayushchim argumentom (Linear Differential Equations with a Retarded Argument), Moscow: Nauka, 1972.

    MATH  Google Scholar 

  6. Hale, J., Theory of Functional Differential Equations, New York: Springer, 1977. Translated under the title Teoriya funktsional’no-differentsial’nykh uravnenii, Moscow: Mir, 1984.

    Book  MATH  Google Scholar 

  7. Azbelev, N.V., Maksimov, V.P., and Rakhmatullina, L.F., Vvedenie v teoriyu funktsional’no-differentsial’nykh uravnenii (Introduction to the Theory of Functional-Differential Equations), Moscow: Nauka, 1991.

    MATH  Google Scholar 

  8. Boikov, I.V., On stability of motion in a system with aftereffect, Prikl. Mat. Mekh., 1997, vol. 61, no. 3, pp. 398–402.

    MathSciNet  Google Scholar 

  9. Boikov, I.V., On the stability of solutions of differential equations with aftereffect, Differ. Equations, 1998, vol. 34, no. 8, pp. 1138–1141.

    MathSciNet  MATH  Google Scholar 

  10. Boikov, I.V., Ustoichivost’ reshenii differentsial’nykh uravnenii (Stability of Solutions of Differential Equations), Penza: Penz. Gos. Univ., 2008.

    Google Scholar 

  11. Marchuk, G.I., Matematicheskie modeli v immunologii. Vychislitel’nye metody i eksperimenty (Mathematical Models in Immunology. Computational Methods and Experiments), Moscow: Nauka, 1991.

    MATH  Google Scholar 

  12. Bratus’, A.S., Novozhilov, A.S., and Platonov, A.P., Dinamicheskie modeli i modeli biologii (Dynamical Systems and Models in Biology), Moscow: Fizmatlit, 2010.

    Google Scholar 

  13. Paramonov, I.V., Construction of asymptotic expansion of the solution of the equation of neuron described by the differential equation with variable delay, Modelir. Anal. Inform. Sist., 2007, vol. 14, no. 2, pp. 36–39.

    Google Scholar 

  14. Hopfield, J.J., Neurons with graded response have collective computations properties like those of twostate neurons, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, no. 10, pp. 3088–3092.

    Article  MATH  Google Scholar 

  15. Cichocki, A. and Unbehauen, R., Neural Networks for Optimization and Signal Processing, New York: Wiley, 1993.

    MATH  Google Scholar 

  16. Akca, H., Alassar, R., and Covachev, V., Stability of neural networks with time varying delays in the presence of impulses, Adv. Dynam. Syst. Appl., 2006, vol. 1, no. 1, pp. 1–15.

    MathSciNet  MATH  Google Scholar 

  17. Norkin, S.B., On a case of retardation dependence on the sought function, Zh. Vychisl. Mat. Mat. Fiz., 1962, vol. 2, no. 2, pp. 343–348.

    Google Scholar 

  18. Daletskii, Yu.L. and Krein, M.G., Ustoichivost’ reshenii differentsial’nykh uravnenii v banakhovom prostranstve (Stability of Solutions of Differential Equations in a Banach Space), Moscow: Nauka, 1970.

    Google Scholar 

  19. Bylov, B.F., Vinograd, R.E., Grobman, D.M., and Nemytskii, V.V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti (Theory of Lyapunov Exponents and Its Applications to Stability Problems), Moscow: Nauka, 1966.

    Google Scholar 

  20. Dekker, K. and Verwer, J.G., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, Amsterdam: North Holland, 1984. Translated under the title Ustoichivost’ metodov Runge-Kutty dlya zhestkikh nelineinykh differentsial’nykh uravnenii, Moscow: Mir, 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Boikov.

Additional information

Original Russian Text © I.V. Boikov, 2018, published in Differentsial’nye Uravneniya, 2018, Vol. 54, No. 4, pp. 435–457.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boikov, I.V. Stability of Steady-State Solutions of Systems of Nonlinear Nonautonomous Delay Differential Equations. Diff Equat 54, 427–449 (2018). https://doi.org/10.1134/S001226611804002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001226611804002X

Navigation