Advertisement

Differential Equations

, Volume 53, Issue 13, pp 1764–1816 | Cite as

Differential Equations with Hysteresis Operators. Existence of Solutions, Stability, and Oscillations

  • G. A. Leonov
  • M. M. Shumafov
  • V. A. Teshev
  • K. D. Aleksandrov
Control Theory

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Visintin, A., Differential Models of Hysteresis, Berlin: Springer-Verlag, 1994.MATHCrossRefGoogle Scholar
  2. 2.
    Visintin, A., Mathematical models of hysteresis, The Science of Hysteresis, Vol. 1: Mathematical Modeling and Applications, Berotti, G. and Mayergoyz, I.D., Eds., Amsterdam: Elsevier/Academic, 2006, pp. 1–114.Google Scholar
  3. 3.
    Filippov, A. F., Differential Equations with Discontinuous Righthand Sides, Dordrecht: Kluwer, 1988.CrossRefGoogle Scholar
  4. 4.
    Yakubovich, V. A., Leonov, G.A., and Gelig, A.Kh., Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, Singapore: World Scientific, 2004.MATHCrossRefGoogle Scholar
  5. 5.
    Andronov, A.A. and Bautin, N.N., Sur un cas dégénérée du problème général de régulation directe, C. R. (Dokl.) Acad. Sci. USSR, 1945, vol. 46, no. 7, pp. 277–279.MATHGoogle Scholar
  6. 6.
    Fel’dbaum, A.A., Simplest bang-bang automatic control systems, Avtom. Telemekh., 1949, no. 10, pp. 249–260.Google Scholar
  7. 7.
    Andronov, A.A., Vitt, A.A., and Khaikin, S.E., Teoriya kolebanii (Theory of Oscillations), Moscow: Gos. Izd. Fiz. Mat. Lit., 1959, 2nd ed.Google Scholar
  8. 8.
    Yakubovich, V.A., The conditions for absolute stability of a control system with a hysteresis-type nonlinearity, Sov. Dokl. Phys., 1963, vol. 8, pp. 235–237.MATHGoogle Scholar
  9. 9.
    Yakubovich, V.A., The method of matrix inequalities in the theory of stability of non-linear controlled systems. III: Absolute stability of systems with hysteresis non-linearities, Autom. Remote Control, 1965, vol. 26, no. 5, pp. 577–592.MathSciNetMATHGoogle Scholar
  10. 10.
    Yakubovich, V.A., Methods of Absolute Stability Theory, Methods for the Analysis of Nonlinear Automatic Control Systems, Nelepin, R.A., Ed., Moscow: Nauka, 1975, pp. 74–180.Google Scholar
  11. 11.
    Barabanov, N.E. and Yakubovich, V.A., Absolute stability of control systems with one hysteresis nonlinearity, Autom. Remote Control, 1980, vol. 40, pp. 1713–1719.MATHGoogle Scholar
  12. 12.
    Logemann, H. and Ryan, E.P., Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour of solutions, ESAIM: Control Optim. Calc. Var., 2003, vol. 9, pp. 169–196.MATHGoogle Scholar
  13. 13.
    Leonov, G.A., Necessary frequency conditions for the absolute stability of nonstationary systems, Autom. Remote Control, 1981, vol. 42, no. 1, pp. 9–13.MathSciNetMATHGoogle Scholar
  14. 14.
    Leonov, G.A. and Filina, M.Yu., Instability and oscillations of systems with hysteretic nonlinearities, Autom. Remote Control, 1983, vol. 44, no. 1, pp. 33–38.MathSciNetMATHGoogle Scholar
  15. 15.
    Leonov, G.A., The nonlocal reduction method in the theory of absolute stability of nonlinear systems: I, Autom. Remote Control, 1984, vol. 45, no. 2, pp. 45–53.MathSciNetGoogle Scholar
  16. 16.
    Leonov, G.A., Nonlocal reduction method in the theory of absolute stability of nonlinear systems: II, Autom. Remote Control, 1984, vol. 45, no. 3, pp. 315–323.MathSciNetMATHGoogle Scholar
  17. 17.
    Leonov, G.A. and Smirnova, V.B., Method of nonlocal reduction in stability theory, in Metod funktsii Lyapunova i ego prilozheniya (The Method of Lyapunov Functions and Its Applications), Novosibirsk: Nauka, 1984, pp. 98–106.Google Scholar
  18. 18.
    Leonov, G.A. and Smirnova, V.B., Nonlocal reduction method in differential equations theory, in Topics in Mathematical Analysis: A Volume Dedicated to the Memory of A. L. Cauchy, Singapore: World Sci., 1989, pp. 658–694.MATHCrossRefGoogle Scholar
  19. 19.
    Ewing, J.A., Experimental research in magnetism, Philos. Trans. R. Soc. London, 1885, vol. 176, no. 2, pp. 131–159.Google Scholar
  20. 20.
    Ishlinskii, A.Yu., Some applications of statistics in describing deformation laws, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1944, no. 9, pp. 583–590.Google Scholar
  21. 21.
    Preisach, F., Über die magnetische Nachwirkung, Z. Phys. A: Hadrons Nucl., 1935, vol. 94, no. 5, pp. 277–302.CrossRefGoogle Scholar
  22. 22.
    Enderby, J.A., The domain model of hysteresis. Part 1: Independent domains, Trans. Faraday Soc., 1955, vol. 51, pp. 835–848.CrossRefGoogle Scholar
  23. 23.
    Enderby, J.A., The domain model of hysteresis. Part 2: Interacting domains, Trans. Faraday Soc., 1956, vol. 52, pp. 106–120.CrossRefGoogle Scholar
  24. 24.
    Prandtl, L., Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. Angew. Math. Mech., 1928, vol. 8, no. 2, pp. 85–106.MATHCrossRefGoogle Scholar
  25. 25.
    Everett, D.H. and Whitton, W.I., A general approach to hysteresis, Trans. Faraday Soc., 1952, vol. 48, pp. 749–757.CrossRefGoogle Scholar
  26. 26.
    Everett, D.H. and Smith, F. W., A general approach to hysteresis. Part 2: Development of the domain theory, Trans. Faraday Soc., 1954, vol. 50, pp. 187–197.CrossRefGoogle Scholar
  27. 27.
    Everett, D.H., A general approach to hysteresis. Part 3: A formal treatment of the independent domain model of hysteresis, Trans. Faraday Soc., 1954, vol. 50, pp. 1077–1096.CrossRefGoogle Scholar
  28. 28.
    Everett, D.H., A general approach to hysteresis. Part 4: An alternative formulation of the domain model, Trans. Faraday Soc., 1955, vol. 51, pp. 1551–1557.CrossRefGoogle Scholar
  29. 29.
    Jiles, D.C. and Atherton, D.L., Ferromagnetic hysteresis, IEEE Trans. Magn., 1983, vol. 19, no. 5, pp. 2183–2185.CrossRefGoogle Scholar
  30. 30.
    Jiles, D.C., Introduction to Magnetism and Magnetic Materials, London: Chapman & Hall, 2015.Google Scholar
  31. 31.
    Coleman, B.D. and Hodgdon, M.L., A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials, Int. J. Eng. Sci., 1986, vol. 24, no. 6, pp. 897–919.MATHCrossRefGoogle Scholar
  32. 32.
    Coleman, B.D. and Hodgdon, M.L., On a class of constitutive relations for ferromagnetic hysteresis, Arch. Ration. Mech. Anal., 1987, vol. 99, no. 4, pp. 375–396.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Koiter, W.T., General theorems for elastic-plastic solids, Progress in Solid Mechanics, Sneddon, I.N. and Hill, R., Eds., Amsterdam: North Holland, 1960, pp. 165–221.Google Scholar
  34. 34.
    The Science of Hysteresis, Berotti, G. and Mayergoyz, I.D., Eds., Amsterdam: Elsevier/Academic, 2006, Vols.1–3.Google Scholar
  35. 35.
    Models of Hysteresis, Visintin, A., Ed., Harlow: Longman, 1993.Google Scholar
  36. 36.
    Rieder, G., Elastic obstacles for bloch walls, Models of Hysteresis, Visintin, A., Ed., Harlow: Longman, 1993, pp. 143–157.Google Scholar
  37. 37.
    Krasnosel’skii, M.A. and Rachinskii, D.I., Invariant convex classes of states of continual relay systems, Autom. Remote Control, 1994, vol. 55, no. 10, part 1, pp. 1405–1412.MathSciNetGoogle Scholar
  38. 38.
    Krasnoselskii, M.A., Rachinskii, D.I., and Mayergoyz, I.D., On canonical states of continual systems of relays, Z. Angew. Math. Mech., 1995, vol. 75, no. 7, pp. 515–522.MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Krasnoselskii, M.A. and Pokrovskii, A.V., Systems with Hysteresis, Heidelberg: Springer-Verlag, 1989.CrossRefGoogle Scholar
  40. 40.
    Brokate, M. and Sprekels, J., Hysteresis and Phase Transitions, New York: Springer-Verlag, 1996.MATHCrossRefGoogle Scholar
  41. 41.
    Rachinskii, D.I., Equivalent combinations of stops, Autom. Remote Control, 1998, vol. 59, no. 10, part 1, pp. 1370–1378.MATHGoogle Scholar
  42. 42.
    Bouc, R., Solution périodique de l’équation de la “ferrorésonance” avec hystérésis, C. R. Seances Acad. Sci. Ser. A, 1966, vol. 263, no. 15, pp. 497–499.MATHGoogle Scholar
  43. 43.
    Bouc, R., Modèle mathématique d’hystérésis. Application aux systèmes à un degré de liberté, Ph. D. Thesis, Marseille, 1969.Google Scholar
  44. 44.
    Bouc, R., Modèle mathématique d’hystérésis, Acustica, 1971, vol. 24, pp. 16–25.MATHGoogle Scholar
  45. 45.
    Brokate, M., Hysteresis operators, Phase Transitions and Hysteresis, Visintin, A., Ed., Lecture Notes in Math., vol. 1584, Berlin: Springer-Verlag, 1994, pp. 1–38.Google Scholar
  46. 46.
    Krejčí, P., Hysteresis, Convexity, and Dissipation in Hyperbolic Equations, Tokyo: Gakkotosho, 1996.MATHGoogle Scholar
  47. 47.
    Della Torre, E., Magnetic Hysteresis, New York: Wiley, 2000.CrossRefGoogle Scholar
  48. 48.
    Macki, J.W., Nistri, P., and Zecca, P., Mathematical models for hysteresis, SIAM Rev., 1993, vol. 35, no. 1, pp. 94–123.MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Mayergoyz, I.D., Mathematical Models of Hysteresis, New York: Springer-Verlag, 1991.MATHCrossRefGoogle Scholar
  50. 50.
    Mayergoyz, I.D., Mathematical Models of Hysteresis and Their Applications, Amsterdam: Elsevier/ Academic, 2003.Google Scholar
  51. 51.
    Müller, I., Six lectures on shape memory, Boundaries, Interfaces, and Transitions, Delfour, M.C., Ed., CRM Proceedings and Lecture Notes, vol. 13, Providence: Amer. Math. Soc., 1998, pp. 125–161.Google Scholar
  52. 52.
    Visintin, A., Six talks on hysteresis, Boundaries, Interfaces, and Transitions, Delfour, M.C., Ed., CRM Proceedings and Lecture Notes, vol. 13, Providence: Amer. Math. Soc., 1998, pp. 207–236.Google Scholar
  53. 53.
    Hassani, V., Tjahjowidodo, T., and Do, T.N., A survey on hysteresis modeling, identification, and control, Mech. Syst. Signal Process., 2014, vol. 49, no. 1, pp. 209–233.CrossRefGoogle Scholar
  54. 54.
    Iványi, A., Hysteresis Models in Electromagnetic Computation, Budapest: Akadémiai Kiadó, 1997.Google Scholar
  55. 55.
    Bennett, L.H., Preface, Proceedings of the Workshop on Hysteresis Modeling and Micromagnetism (Asburn, 1996), Phys. B (Amsterdam, Neth.), 1997, vol. 233, no.4.Google Scholar
  56. 56.
    Brokate, M., Dressler, K., and Krejčí, P., The Mróz model: a hysteresis operator for rate-independent plasticity, World Congress of Nonlinear Analysis’92 (Tampa, 1992), Berlin: Walter de Gruyter, 1996, vol. 1, pp. 797–806.MATHGoogle Scholar
  57. 57.
    Hornung, U., The mathematics of hysteresis, Bull. Austral. Math. Soc., 1984, vol. 30, no. 2, pp. 271–287.MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Krejčí, P., Vector hysteresis models, Eur. J. Appl. Math., 1991, vol. 2, no. 3, pp. 281–292.MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Krejčí, P., Hysteresis operators—a new approach to evolution differential inequalities, Commentat. Math. Univ. Carolin., 1989, vol. 30, no. 3, pp. 525–536.MathSciNetMATHGoogle Scholar
  60. 60.
    Krejčí, P., Hysteresis models of plasticity, Preprint, 1993.MATHGoogle Scholar
  61. 61.
    Phase Transitions and Hysteresis, Visintin, A., Ed., Lecture Notes in Math., vol. 1584, Berlin: Springer-Verlag, 1994.Google Scholar
  62. 62.
    Cardelli, E., Della Torre, E., and Ban, G., Experimental determination of Preisach distribution functions in magnetic cores, Phys. B (Amsterdam, Neth.), 2000, vol. 275, nos. 1–3, pp. 262–269.CrossRefGoogle Scholar
  63. 63.
    Borzdyko, V.I., Hysteresis nonstationary nonlinearities, Ukr. Math. J., 2008, vol. 60, no. 3, pp. 339–356.MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Leonov, G.A., Burkin, I.M., and Shepeljavyi, A.I., Frequency Methods in Oscillation Theory, Dordrecht: Kluwer, 1996.MATHCrossRefGoogle Scholar
  65. 65.
    Brokate, M., Pokrovskii, A., Rachinskii, D., and Rasskazov, O., Differential equations with hysteresis via a canonical example, The Science of Hysteresis, vol. 1: Mathematical Modeling and Applications, Berotti, G. and Mayergoyz, I.D., Eds., Amsterdam: Elsevier/Academic, 2006, pp. 125–292.Google Scholar
  66. 66.
    Borzdyko, V.I., Differential Equations with Complicated Nonlinearities, Extended Abstract of Doctoral (Phys.-Math.) Dissertation, Dushanbe, 2000.Google Scholar
  67. 67.
    Borzdyko, V.I., Sufficient tests for the existence and uniqueness of a solution of the Cauchy problem for a differential equation with a hysteresis nonlinearity, Differ. Equations, 2013, vol. 49, no. 12, pp. 1469–1475.MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Borzdyko, V.I., On some classes of uniqueness theorems for differential equations with hysteresis nonlinearities, Dokl. Akad. Nauk Tadzh. SSR, 1985, vol. 28, no. 10, pp. 547–551.MathSciNetMATHGoogle Scholar
  69. 69.
    Borzdyko, V.I., Uniqueness theorem for differential equations with hysteresis nonlinearities, Differ. Equations, 1987, vol. 23, no. 6, pp. 623–626.MathSciNetMATHGoogle Scholar
  70. 70.
    Borzdyko, V.I., Uniqueness theorems of Wend type for differential equations with hysteresis nonlinearities, Izv. Akad. Nauk Tadzh. SSR, Otd. Fiz.-Mat. Geol.-Khim. Nauk, 1988, vol. 108, no. 2, pp. 63–65.MathSciNetGoogle Scholar
  71. 71.
    Borzdyko, V.I., Uniqueness theorem of Bernfeld, Driver, and Lakshmikantham type for differential equations with hysteresis nonlinearities, Dokl. Akad. Nauk Tadzh. SSR, 1987, vol. 30, no. 2, pp. 74–77.MathSciNetMATHGoogle Scholar
  72. 72.
    Borzdyko, V.I., Uniqueness conditions for differential-equation systems with hysteresis terms, Differ. Equations, 1988, vol. 24, no. 8, pp. 827–830.MATHGoogle Scholar
  73. 73.
    Borzdyko, V.I., Existence and uniqueness conditions of the solution of the Cauchy problem for a system of ordinary differential equations with hysteresis nonlinearities, Dokl. Akad. Nauk Tadzh. SSR, 1987, vol. 30, no. 12, pp. 766–770.MathSciNetMATHGoogle Scholar
  74. 74.
    Vladimirov, A.A., Krasnosel’skii, M.A., and Chernorutskii, V.V., The Cauchy problem for systems with hysteresis, Dokl. Math., 1993, vol. 48, no. 3, pp. 502–506.MathSciNetGoogle Scholar
  75. 75.
    Rachinskii, D.I., The Cauchy problem for differential equations with a Mróz hysteresis nonlinearity, Differ. Equations, 1997, vol. 33, no. 8, pp. 1047–1054.MathSciNetGoogle Scholar
  76. 76.
    Krejčí, P., A remark on the local Lipschitz continuity of vector hysteresis operators, Appl. Math., 2001, vol. 46, no. 1, pp. 1–11.MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Krejčí, P. and Sprekels, J., Hysteresis operators in phase-field models of Penrose–Fife type, Appl. Math., 1998, vol. 43, no. 3, pp. 207–222.MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Krejčí, P. and Sprekels, J., On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity, J. Math. Anal. Appl., 1997, vol. 209, no. 1, pp. 25–46.MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Krejčí, P. and Sprekels, J., Global solutions to a coupled parabolic–hyperbolic system with hysteresis in 1-D magnetoelasticity, Nonlinear Anal. Theory Methods Appl., 1998, vol. 33, no. 4, pp. 341–358.MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Krejčí, P. and Sprekels, J., A hysteresis approach to phase-field models, Nonlinear Anal. Theory Methods Appl., 2000, vol. 39, no. 5, pp. 569–586.MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Krejčí, P. and Sprekels, J., Strong solutions to equations of visco-thermo-plasticity with a temperaturedependent hysteretic strain-stress law, Solid Mech. Appl., 1999, vol. 66, pp. 237–244.Google Scholar
  82. 82.
    Chernorutskii, V. and Rachinskii, D., On uniqueness of an initial-value problem for ODE with hysteresis, Nonlinear Differ. Equations Appl., 1997, vol. 4, no. 3, pp. 391–399.MathSciNetCrossRefGoogle Scholar
  83. 83.
    Kopfová, J., Uniqueness theorem for a Cauchy problem with hysteresis, Proc. Amer. Math. Soc., 1999, vol. 127, no. 12, pp. 3527–3532.MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Mróz, Z., On the description of anisotropic workhardening, J. Mech. Phys. Solids, 1967, vol. 15, no. 3, pp. 163–175.CrossRefGoogle Scholar
  85. 85.
    Kopfová, J., Semigroup approach to the question of stability for a partial differential equation with hysteresis, J. Math. Anal. Appl., 1998, vol. 223, no. 1, pp. 272–287.MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Kopfová, J. and Kopf, T., Differential equations, hysteresis, and time delay, Z. Angew. Math. Phys., 2002, vol. 53, no. 4, pp. 676–691.MATHCrossRefGoogle Scholar
  87. 87.
    Kopfová, J., Periodic solutions and asymptotic behavior of a PDE with hysteresis in the source term, Rocky Mt. J. Math., 2006, vol. 36, no. 2, pp. 539–554.MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Kopfová, J., Entropy condition for a quasilinear hyperbolic equation with hysteresis, Differ. Integr. Equations, 2005, vol. 18, no. 4, pp. 451–467.MathSciNetMATHGoogle Scholar
  89. 89.
    Kopfová, J., Hysteresis in a first order hyperbolic equation, Dissipative Phase Transitions, Colli, P., Kenmochi, N., and Sprekels, J., Eds., Series on Advances in Mathematics for Applied Sciences, vol. 71, Singapore, World Sci., 2006, pp. 141–150.CrossRefGoogle Scholar
  90. 90.
    Eleuteri, M. and Kopfová, J., Uniqueness and decay estimates for a class of parabolic partial differential equations with hysteresis and convection, Nonlinear Anal. Theory Methods Appl., 2010, vol. 73, no. 1, pp. 48–65.MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Yakubovich, V.A., The solution of certain matrix inequalities in automatic control theory, Sov. Dokl. Math., 1962, vol. 3, pp. 620–623.MATHGoogle Scholar
  92. 92.
    Natanson, I.P., Teoriya funktsii veshchestvennoi peremennoi (Theory of Functions of a Real Variable), Moscow: Nauka, 1974.Google Scholar
  93. 93.
    Logemann, H., Ryan, E.P., and Shvartsman, I., A class of differential-delay systems with hysteresis: asymptotic behaviour of solutions, Nonlinear Anal. Theory Methods Appl., 2008, vol. 69, no. 1, pp. 363–391.MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Logemann, H. and Ryan, E.P., Time-varying and adaptive integral control of infinite-dimensional regular linear systems with input nonlinearities, SIAM J. Control Optim., 2000, vol. 38, no. 4, pp. 1120–1144.MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    Logemann, H. and Mawby, A.D., Low-gain integral control of infinite-dimensional regular linear systems subject to input hysteresis, Adv. Math. Syst. Theory, Colonius, F., Helmke, U., Prätzel-Wolters, D., and Wirth, F., Eds., Boston: Birkhäuser, 2000, pp. 255–293.Google Scholar
  96. 96.
    Yakubovich, V.A., Frequency-domain criteria for oscillation in nonlinear systems with one stationary nonlinear component, Sib. Math. J., 1974, vol. 14 (1973), no. 5, pp. 768–788.MATHCrossRefGoogle Scholar
  97. 97.
    Popov, E.P., Teoriya nelineinykh sistem avtomaticheskogo regulirovaniya i upravleniya (Theory of Nonlinear Automatic Control Systems), Moscow: Nauka, 1978.Google Scholar
  98. 98.
    Tsypkin, Ya.Z., Teoriya releinykh sistem avtomaticheskogo regulirovaniya (Theory of Relay Automatic Control Systems), Moscow: Gos. Izd. Tekh. Teor. Lit., 1955.Google Scholar
  99. 99.
    Tsypkin, Ya.Z., Releinye avtomaticheskie sistemy (Relay Automatic Systems), Moscow: Nauka, 1974.Google Scholar
  100. 100.
    Caughey, T.K., Sinusoidal excitation of a system with bilinear hysteresis, J. Appl. Mech., 1960, vol. 27, no. 4, pp. 640–643.MathSciNetCrossRefGoogle Scholar
  101. 101.
    Caughey, T.K., Random excitation of a system with bilinear hysteresis, J. Appl. Mech., 1960, vol. 27, no. 4, pp. 649–652.MathSciNetCrossRefGoogle Scholar
  102. 102.
    Leonov, G.A. and Filina, M.Yu., Necessary conditions for the global stability of differential systems with hysteresis right-hand side, in Problemy sovremennoi teorii periodicheskikh dvizhenii (Problems in Modern Theory of Periodic Motions), Izhevsk: Inst. Komp. Issled., 1981, pp. 44–49.Google Scholar
  103. 103.
    Leonov, G.A. and Teshev, V.A., A frequency criterion of stability of systems of differential equations with hysteretic functions, Differ. Uravn., 1987, vol. 23, no. 4, pp. 718–719.MATHGoogle Scholar
  104. 104.
    Teshev, V.A. and Shumafov, M.M., Global asymptotic stability of solutions of second-order equations with a hysteresis nonlinearity, Tr. Fiz. Obshch. Resp. Adygeya, 1997, no. 2, pp. 61–69.Google Scholar
  105. 105.
    Teshev, V.A., Shepelyavyi, A.I., and Shumafov, M.M., Frequency criterion for the stabilization of systems with hysteresis nonlinearities by a harmonic input, Nelineinye dinamicheskie sistemy: sbornik statei (Nonlinear Dynamical Systems: Collection of Papers), St.-Petersburg, 1997, pp. 261–280.Google Scholar
  106. 106.
    Teshev, V.A. and Shumafov, M.M., Frequency criterion for the dichotomy of nonlinear control systems with hysteresis nonlinearities, Tr. Fiz. Obshch. Resp. Adygeya, 1999, no. 4, pp. 34–39.Google Scholar
  107. 107.
    Shumafov, M.M., Stabilization of systems with hysteresis nonlinearities by a harmonic input, Vestn. Adygeisk. Gos. Univ. Ser. Estest.-Mat. Tekh. Nauki, 2012, no. 3, pp. 11–19.Google Scholar
  108. 108.
    Shumafov, M.M., Stability of systems of differential equations with hysteresis nonlinearities, Vestn. Adygeisk. Gos. Univ. Ser. Estest.-Mat. Tekh. Nauki, 2012, no. 3, pp. 20–31.Google Scholar
  109. 109.
    Neimark, Yu.I., Periodic modes and stability in relay systems, Avtom. Telemekh., 1953, vol. 14, no. 5, pp. 656–669.Google Scholar
  110. 110.
    Netushil, A.V., Self-induced oscillations in systems with negative hysteresis, Trudy 5-i mezhdunarodnoi konferentsii po nelineinym kolebaniyam (Proc. 5th Int. Conf. on Nonlinear Oscillations), Kiev: Akad. Nauk Ukr. SSR, 1970, vol. 4 pp. 393–396.Google Scholar
  111. 111.
    Krasnosel’skii, A.M., Forced oscillations in systems with hysteresis nonlinearities, Sov. Dokl. Phys., 1987, vol. 32, pp. 98–100.Google Scholar
  112. 112.
    Rachinskii, D.I., Asymptotic stability of large-amplitude oscillations in systems with hysteresis, Nonlinear Differ. Equations Appl., 1999, vol. 6, no. 3, pp. 267–288.MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Rachinskii, D.I., Test for the existence of oscillations in systems with hysteresis, Izv. Ross. Akad. Estestv. Nauk Ser. MMMIU, 2000, vol. 4, no. 1–2, pp. 235–248.Google Scholar
  114. 114.
    Krasnoselskii, A.M. and Rachinskii, D.I., On a bifurcation governed by hysteresis nonlinearity, Nonlinear Differ. Equations Appl., 2002, vol. 9, no. 1, pp. 93–115.MathSciNetMATHCrossRefGoogle Scholar
  115. 115.
    Krasnoselskii, A.M. and Rachinskii, D.I., On the continua of cycles in systems with hysteresis, Dokl. Math., 2001, vol. 63, no. 3, pp. 339–344.MathSciNetGoogle Scholar
  116. 116.
    Krasnoselskii, A.M. and Rachinskii, D.I., On a nonlocal condition for existence of cycles of hysteresis systems, Autom. Remote Control, 2003, vol. 64, no. 2, pp. 231–251.MathSciNetCrossRefGoogle Scholar
  117. 117.
    Rachinskii, D.I., On natural continua of periodic solutions of the systems with hysteresis, Autom. Remote Control, 2003, vol. 64, no. 3, pp. 420–438.MathSciNetCrossRefGoogle Scholar
  118. 118.
    Rachinskii, D.I., On bifurcation of large-amplitude stable cycles for equations with hysteresis, Autom. Remote Control, 2004, vol. 65, no. 12, pp. 1915–1937.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. A. Leonov
    • 1
    • 2
  • M. M. Shumafov
    • 3
  • V. A. Teshev
    • 3
  • K. D. Aleksandrov
    • 1
  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia
  3. 3.Adygeya State UniversityMaikopRussia

Personalised recommendations