Differential Equations

, Volume 53, Issue 13, pp 1734–1763 | Cite as

Boundary Value Problems with Free Surfaces in the Theory of Phase Transitions

  • V. G. Osmolovskii
Control Theory


The aim of the paper is to show, using the one-dimensional problem as an example, what is to be expected and what should be pursued when studying the multidimensional case. The one-dimensional case has been chosen as a model, because here the problem admits an explicit solution permitting one to follow the phase transformation process.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zarubin, V.S. and Kuvykin, G.N., Matematicheskie modeli termomekhaniki (Mathematical Models of Thermomechanics), Moscow: Fizmatlit, 2002.Google Scholar
  2. 2.
    Christensen, R.M., Mechanics of Composite Materials, New York: Wiley, 1979.Google Scholar
  3. 3.
    Grinfeld, M.A., Metody mekhaniki sploshnykh sred v teorii fazovykh prevrashchenii (Methods of Continuum Mechanics in Phase Transition Theory), Moscow: Nauka, 1990.Google Scholar
  4. 4.
    Allaire, G., Shape Optimization by the Homogenization Method, New York: Springer-Verlag, 2002.CrossRefMATHGoogle Scholar
  5. 5.
    Müller, S., Variational Models for Microstructure and Phase Transitions, Leipzig: Max-Planck-Institut für Mathematik in den Naturwissenschaften, 1998.MATHGoogle Scholar
  6. 6.
    Dacorogna, B., Direct Methods in the Calculus of Variations, Berlin: Springer-Verlag, 1989.CrossRefMATHGoogle Scholar
  7. 7.
    Osmolovskii, V.G., Existence of equilibria in a one-dimensional phase transition problem, Vestnik St. Petersburg. Univ. Ser. 1: Mat. Mekh. Astron., 2006, no. 3, pp. 54–65.Google Scholar
  8. 8.
    Osmolovskii, V.G., Stability of one-phase equilibrium states of a two-phase elastic medium with zero surface tension coefficient: One-dimensional case, J. Math. Sci., 2006, vol. 135, no. 6, pp. 3437–3456.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Osmolovskii, V.G., Exact solutions of the phase transition problem in a one-dimensional model case, Vestnik St. Petersburg. Univ. Math., 2007, vol. 40, no. 3, pp. 182–187.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Evans, L.C. and Gariepy, R.F., Measure Theory and Fine Propeties of Functions, London: CRC, 1992.MATHGoogle Scholar
  11. 11.
    Butazzo, G., Giaquinta, M., and Hildebrandt, S., One-Dimensional Variation Problems: An Introduction, Oxford: Clarendon, 1998.Google Scholar
  12. 12.
    Gel’fand, I.M. and Fomin, S.V., Variatsionnoe ischislenie (Calculus of Variations), Moscow: Gos. Izd. Fiz. Mat. Lit., 1961.Google Scholar
  13. 13.
    Osmolovskii, V.G., One-dimensional phase transition problem of continuum mechanics with microinhomogeneities, J. Math. Sci., 2010, vol. 167, no. 3, pp. 394–405.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Osmolovskii, V.G., Quasistationary phase transition problem in two-phase media: One-dimensional case. The zero surface stress coefficient, J. Math. Sci., 2015, vol. 210, no. 5, pp. 664–676.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Osmolovskii, V.G., Matematicheskie voprosy teorii fazovykh perekhodov v mekhanike sploshnykh sred (Mathematical Problems of Phase Transition Theory in Continuum Mechanics), St. Petersburg Mathematical Society, Preprint 2014-04. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations