Skip to main content
Log in

On the stability of hyperbolic attractors of systems of differential equations

  • Ordinary Differential Equations
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We study small C 1-perturbations of systems of differential equations that have a weakly hyperbolic invariant set. We show that the weakly hyperbolic invariant set is stable even if the Lipschitz condition fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pliss, V.A. and Sell, G.R., Perturbations of Attractors of Differential Equations, J. Differential Equations, 1991, vol. 92, pp. 100–124.

    Article  MathSciNet  MATH  Google Scholar 

  2. Pliss, V.A. and Sell, G.R., Approximation Dynamics and the Stability of Invariant Sets, J. Differential Equations, 1997, vol. 149, pp. 1–51.

    Article  MathSciNet  MATH  Google Scholar 

  3. Pliss, V.A., Integral’nye mnozhestva periodicheskikh sistem differentsial’nykh uravnenii (Integral Sets of Periodic Systems of Differential Equations), Moscow: Nauka, 1977.

    MATH  Google Scholar 

  4. Monakov, V.N., The Arrangement of the Integral Surfaces of Weakly Nonlinear Systems of Differential Equations, Vestnik Leningrad. Univ., 1973, no. 1, pp. 68–74.

    MathSciNet  MATH  Google Scholar 

  5. Coddington, E. and Levinson, N., Theory of Ordinary Differential Equations, New York, 1955. Translated under the title Teoriya obyknovennykh differentsial’nykh uravnenii, Moscow: Inostrannaya Literatura, 1958.

    MATH  Google Scholar 

  6. Kelley, Al., Stability of the Center-Stable Manifold, J. Math. Anal. Appl., 1967, vol. 18, pp. 336–344.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kelley, Al., The Stable, Center-Stable, Center, Center-Unstable, Unstable Manifolds, J. Differential Equations, 1967, vol. 3, pp. 546–570.

    Article  MathSciNet  MATH  Google Scholar 

  8. Pliss, V.A., A Reduction Principle in the Theory of Stability of Motion, Izv. Akad. Nauk Ser. Mat., 1964, no. 28, pp. 1297–1324.

    MathSciNet  MATH  Google Scholar 

  9. Fenichel, N., Persistence and Smoothness of Invariant Manifolds for Flows, Indiana Univ. Math. J., 1971, vol. 21, pp. 193–226.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirsch, M.W., Pugh, C.C., and Shub, M., Invariant Manifolds, Lecture Notes in Mathematics, New York, 1977, vol. 583.

  11. Sacker, R.J., A Perturbation Theorem for Invariant Manifolds and Holder Continuity, J. Math. Mech., 1969, vol. 18, pp. 705–762.

    MathSciNet  MATH  Google Scholar 

  12. Sell, G.R., The Structure of a Flow in the Vicinity of an Almost Periodic Motion, J. Differential Equations, 1978, vol. 27, pp. 359–393.

    Article  MathSciNet  MATH  Google Scholar 

  13. Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc., 1967, vol. 73, pp. 747–817.

    Article  MathSciNet  MATH  Google Scholar 

  14. Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, New York, 1988.

    Book  MATH  Google Scholar 

  15. Coppel, W.A., Dichotomies in Stability Theory, Lecture Notes in Math., New York, 1978, vol. 629.

  16. Pliss, V.A. and Sell, G.R., Approximations of the Long-Time Dynamics of the Navier–Stokes Equations, Differential Equations and Geometric Dynamics: Control Science and Dynamical Systems: Lecture Notes, 1993, vol. 152, pp. 247–277.

    MathSciNet  MATH  Google Scholar 

  17. Titi, E.S., On Approximate-Inertial Manifolds of the Navier–Stokes Equations, J. Math. Anal. Appl., 1990, vol. 149, pp. 540–557.

    Article  MathSciNet  MATH  Google Scholar 

  18. Begun, N.A., On the Stability of Leaf Invariant Sets of Two-Dimensional Periodic Systems, Vestnik St.-Peterburg. Univ. Ser. 1 Mat. Mekh. Astron., 2012, no. 4, pp. 3–12.

    Google Scholar 

  19. Begun, N.A., On the Closedness of a Leaf Invariant Set of Perturbed System, Differ. Uravn. Protsessy Upr., 2013, no. 1, pp. 80–88.

    Google Scholar 

  20. Begun, N.A., On the Stability of Invariant Sets of Leaves of Three-Dimensional Periodic Systems, Vestnik St.-Peterburg. Univ. Ser. 1 Mat. Mekh. Astron., 2014, no. 3, pp. 12–19.

    MathSciNet  MATH  Google Scholar 

  21. Begun, N.A., Perturbations of Weakly Hyperbolic Invariant Sets of a Two-Dimension Periodic System, Vestnik St.-Peterburg. Univ. Ser. 1 Mat. Mekh. Astron., 2015, no. 1, pp. 23–33.

    MathSciNet  Google Scholar 

  22. Kostrikin, A.I. and Manin, Yu.I., Lineinaya algebra i geometriya (Linear Algebra and Geometry), Moscow: Nauka, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Begun.

Additional information

Original Russian Text © N.A. Begun, V.A. Pliss, J.R. Sell, 2016, published in Differentsial’nye Uravneniya, 2016, Vol. 52, No. 2, pp. 139–148.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begun, N.A., Pliss, V.A. & Sell, J.R. On the stability of hyperbolic attractors of systems of differential equations. Diff Equat 52, 139–148 (2016). https://doi.org/10.1134/S0012266116020014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266116020014

Keywords

Navigation