Skip to main content
Log in

Upper bound for the Hausdorff dimension of invariant sets of evolution variational inequalities

  • Control Theory
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider the method of determining observations for obtaining an upper bound for the fractal dimension and the Hausdorff dimension of invariant sets of variational inequalities. We suggest a process for constructing determining observations, in particular, for dissipativity, with the use of frequency theorems for evolution systems (the Likhtarnikov–Yakubovich theorem). As an example, we consider a viscoelasticity problem in mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brusin, V.A., Lur’e Equations in Hilbert Space and Their Solvability, Prikl. Mat. Mekh., 1976, vol. 40, no. 5, pp. 947–956.

    MathSciNet  MATH  Google Scholar 

  2. Ermakov, I.V., Kalinin, Yu.N., and Reitmann, F., Determining Modes and Almost Periodic Integrals for Cocycles, Differ. Uravn. Protsessy Upr., 2011, no. 4, pp. 113–137.

    MathSciNet  MATH  Google Scholar 

  3. Likhtarnikov, A.L. and Yakubovich, V.A., A Frequency Theorem for Equations of Evolution Type, Sibirsk. Mat. Zh., 1976, vol. 17, no. 5, pp. 1069–1085.

    MathSciNet  MATH  Google Scholar 

  4. Pankov, A.A., Boundedness and Almost-Periodicity with Respect to Time of Solutions of Evolution Variational Inequalities, Izv. Akad. Nauk SSSR Ser. Mat., 1982, vol. 46, no. 2, pp. 314–346.

    MathSciNet  MATH  Google Scholar 

  5. Reitmann, V., Dinamicheskie sistemy, attraktory i otsenki ikh razmernosti (Dynamical Systems, Attractors, and Estimates for Their Dimensions), St. Petersburg: St. Petersburg Univ., 2013.

    Google Scholar 

  6. Boichenko, V.A., Leonov, G.A., and Reitmann, V., Dimension Theory for Ordinary Differential Equations, Wiesbaden: Vieweg-Teubner Verlag, 2005.

    Book  MATH  Google Scholar 

  7. Brezis, H., Problemes uni lateraux, J. Math. Pures Appl., 1972, vol. 51, pp. 1–168.

    MathSciNet  Google Scholar 

  8. Chueshov, I.D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Kharkov: ACTA, 1999.

    MATH  Google Scholar 

  9. Chueshov, I.D., On Functionals That Uniquely Determine the Long-Time Behavior of Solutions to von Karman Evolution Equations, Uspekhi Mat. Nauk, 1996, vol. 51, no. 5, p. 162.

    MathSciNet  Google Scholar 

  10. Duvant, G. and Lions, J.-L., Inequalities in Mechanics and Physics, Berlin: Springer-Verlag, 1976.

    Book  Google Scholar 

  11. Foias, C. and Prodi, G., Sur le comportement global des solutions nonstationaires des equations de Navier–Stokes en dimension deux, Rend. Sem. Mat. Univ. Padova, 1967, vol. 36, pp. 1–34.

    MathSciNet  MATH  Google Scholar 

  12. Foias, C. and Temam, R., Determination of Solutions of the Navier-Stokes Equations by a Set of Nodal Values, Math. Comp., 1984, vol. 43, pp. 117–133.

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, W. and Sofonea, M., Evolutionary Variational Inequalities Arising in Viscoelastic Contact Problems, SIAM J. Numer. Anal., 2000, vol. 38, no. 2, pp. 556–579.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoffmann, K.-H. and Sprekels, J., On the Identification of Parameters in General Variational Inequalities by Asymptotic Regularization, SIAM J. Math. Anal., 1986, vol. 17, pp. 1198–1217.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jarusek, J. and Eck, Ch., Dynamic Contact Problem with Friction in Linear Viscoelasticity, C. R. Acad. Sci., Paris, 1996, vol. 322, pp. 497–502.

    MathSciNet  MATH  Google Scholar 

  16. Kruck, A. and Reitmann, V., Upper Hausdorff Dimension Estimates for Invariant Sets of Evolutionary Variational Inequalities, Proc. Inter. Conf. “Spatio-Temporal Dynamical Systems”, Moscow, 2014.

    Google Scholar 

  17. Ladyzhenskaya, O.A., A Dynamical System Generated by the Navier–Stokes Equations, J. Soviet Math., 1975, vol. 3, no. 4, pp. 458–479.

    Article  MATH  Google Scholar 

  18. Likhtarnikov, A.L. and Yakubovich, V.A., The Frequency Theorem for Equations of Evolution Type, Siberian Math. J., 1976, vol. 17, no. 5, pp. 790–803.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lions, J.-L., Quelques methodes de resolution des problèmes aux limites nonlineaires, Paris: Dunod, 1969.

    MATH  Google Scholar 

  20. Maksimov, V.I., Inverse Problems for Variational Inequalities, Internat. Ser. Numer. Math., Basel: Birkhouser Verlag, 1992, vol. 107, pp. 275–286.

    MathSciNet  MATH  Google Scholar 

  21. Reitmann, V., Upper Fractal Dimension Estimates for Invariant Sets of Evolutionary Variational Inequalities, Proc. Inter. Conf. “Fractal Geometry and Stochastics III”, Friedrichrode, 2003.

    Google Scholar 

  22. Triebel, H., Interpolation Theorie, Function Spaces, Differential Operators, Amsterdam: North-Holland 1978.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kruck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruck, A.V. Upper bound for the Hausdorff dimension of invariant sets of evolution variational inequalities. Diff Equat 51, 1703–1716 (2015). https://doi.org/10.1134/S0012266115130042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266115130042

Keywords

Navigation