Advertisement

Differential Equations

, Volume 51, Issue 5, pp 571–585 | Cite as

Solvability of the periodic problem for higher-order linear functional differential equations

  • E. I. BravyiEmail author
Ordinary Differential Equations
  • 34 Downloads

Abstract

We obtain necessary and sufficient conditions for the unique solvability of the periodic boundary value problem for a family of nth-order linear functional differential equations with pointwise constraints on the functional operators.

Keywords

Periodic Solution Nontrivial Solution Solvability Condition Unique Solvability Periodic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hakl, R., Lomtatidze, A., and Sremr, J., Some Boundary Value Problems for First Order Scalar Functional Differential Equations, Brno, 2002.Google Scholar
  2. 2.
    Puža, B., Hakl, R., and Lomtatidze, A., On Periodical Solutions of First Order Linear Functional Differential Equations, Nonlinear Anal., 2002, vol. 49, pp. 929–945.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Lomtatidze, A.G., Puža, B., and Hakl, R., On the Periodic Boundary Value Problem for First-Order Functional Differential Equations, Differ. Uravn., 2003, vol. 39, no. 3, pp. 320–327; Engl. transl.: Differ. Equ., 2003, vol. 39, no. 3, pp. 344–352.MathSciNetGoogle Scholar
  4. 4.
    Wang, H., Periodic Solutions for Higher Order Delay Functional Differential Equation with Complex Deviating Argument, Int. J. Math. Anal., 2009, vol. 3, no. 9, pp. 413–418.zbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, X.R. and Pan, L.J., Existence of Periodic Solutions for n-th Order Differential Equations with Deviating Argument, Int. J. Pure Appl. Math., 2009, vol. 3, no. 55, pp. 319–333.MathSciNetGoogle Scholar
  6. 6.
    Zhu, Ya., Periodic Solutions for a Higher Order Nonlinear Neutral Functional Differential Equation, Int. J. Comput. Math. Sci., 2011, vol. 5, no. 1, pp. 8–12.MathSciNetGoogle Scholar
  7. 7.
    Guo, Ch., O’Regan, D., Xu, Yu., and Agarwal, R.P., Existence of Periodic Solutions for a Class of Even Order Differential Equations with Deviating Argument, Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I, 2009, no. 12, pp. 1–12.Google Scholar
  8. 8.
    Song, B., Pan, L.J., and Cao, J., Periodic Solutions for a Class of n-th Order Functional Differential Equations, Int. J. Differ. Equat., 2011, pp. 1–21.Google Scholar
  9. 9.
    Zevin, A.A., Sharp Estimates for the Periods and Amplitudes of Periodic Solutions to Differential Equations with Delay, Dokl. Akad. Nauk, 2007, vol. 415, no. 2, pp. 160–164; Engl. transl.: Doklady Math., 2007, vol. 76, no. 1, pp. 519–523.Google Scholar
  10. 10.
    Zevin, M.A. and Pinsky, A.A., Minimal Periods of Periodic Solutions of Some Lipschitzian Differential Equations, Appl. Math. Lett., 2009, vol. 22, no. 10, pp. 1562–1566.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Schwabik, S., Tvrdy, M., and Vejvoda, O., Differential and Integral Equations: Boundary Value Problems and Adjoints, Praha, 1979.Google Scholar
  12. 12.
    Azbelev, N.V., Maksimov, V.P., and Rakhmatullina, L.F., Vvedenie v teoriyu funktsional’no-differentsial’nykh uravnenii (Introduction to the Theory of Functional Differential Equations), Moscow: Nauka, 1991.Google Scholar
  13. 13.
    Fuchik, S. and Mawhin, J., Periodic Solutions of Some Nonlinear Differential Equations of Higher Order, Časopis. Pest. Mat., 1975, vol. 100, no. 2, pp. 276–283.Google Scholar
  14. 14.
    Kiguradze, I.T., On Periodic Solutions of Higher-Order Linear Differential Equations, Uspekhi Mat. Nauk, 1983, vol. 38, no. 5, pp. 129–130.MathSciNetGoogle Scholar
  15. 15.
    Kiguradze, I.T., Bounded and Periodic Solutions of Higher-Order Linear Differential Equations, Mat. Zametki, 1985, vol. 37, no. 1, pp. 48–62.zbMATHMathSciNetGoogle Scholar
  16. 16.
    Bates, F.W. and Ward, Y.R., Periodic Solutions of Higher Order Systems, Pacific J. Math., 1979, vol. 84, no. 2, pp. 275–282.zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Trubnikov, Yu.V. and Perov, A.I., Lineinye differentsial’nye operatory (Linear Differential Operators), Minsk, 1986.Google Scholar
  18. 18.
    Kiguradze, I.T., On a Resonance Periodic Problem for Nonautonomous Higher-Order Differential Equations, Differ. Uravn., 2008, vol. 44, no. 8, pp. 1022–1032; Engl. transl.: Differ. Equ., 2008, vol. 44, no. 8, pp. 1053–1063.MathSciNetGoogle Scholar
  19. 19.
    Kiguradze, I. and Kiguradze, T., On Solvability of Boundary Value Problems for Higher Order Nonlinear Hyperbolic Equations, Nonlinear Anal., 2008, vol. 69, pp. 1914–1933.zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Rachunkova, I., Stanek, S., and Tvrdy, M., Solvability of Nonlinear Singular Problems for Ordinary Differential Equation, Hindawi, 2008.Google Scholar
  21. 21.
    Lasota, A. and Opial, Z., Sur les solutions periodiques des equations differentielles ordinaires, Ann. Polon. Math., 1964, vol. 16, pp. 69–94.zbMATHMathSciNetGoogle Scholar
  22. 22.
    Kiguradze, I.T. and Kusano, T., On Periodic Solutions of Higher-Order Nonautonomous Ordinary Differential Equations, Differ. Uravn., 1999, vol. 35, no. 1, pp. 72–78; Engl. transl.: Differ. Equ., 1999, vol. 35, no. 1, pp. 71–77.MathSciNetGoogle Scholar
  23. 23.
    Kiguradze, I. and Lomtatidze, A., Periodic Solutions of Nonautonomous Ordinary Differential Equations, Monatsh. Math., 2010, vol. 159, pp. 235–252.zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Hakl, R. and Mukhigulashvili, S., On One Estimate for Periodic Functions, Georgian Math. J., 2005, vol. 12, no. 1, pp. 97–114.zbMATHMathSciNetGoogle Scholar
  25. 25.
    Hakl, R. and Mukhigulashvili, S., A Periodic Boundary Value Problem for Functional Differential Equations of Higher Order, Georgian Math. J., 2009, vol. 16, no. 4, pp. 651–665.zbMATHMathSciNetGoogle Scholar
  26. 26.
    Bravyi, E.I., On the Best Constants in the Solvability Conditions for the Periodic Boundary Value Problem for Higher-Order Functional Differential Equations, Differ. Uravn., 2012, vol. 48, no. 6, pp. 773–780; Engl. transl.: Differ. Equ., 2012, vol. 48, no. 6, pp. 779–786.MathSciNetGoogle Scholar
  27. 27.
    Mukhigulashvili, S., Partsvania, N., and Puža, B., On a Periodic Problem for Higher-Order Differential Equations with a Deviating Argument, Nonlinear Anal., 2011, vol. 74, pp. 3232–3241.zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Levin, V.I. and Stechkin, S.B., Complements to the Russian Translation of the Monograph by Hardy, G., Littlewood, J., and Polya, G., Inequalities, Cambridge, 1934. Translated under the title Neravenstva, Moscow, 1948.Google Scholar
  29. 29.
    Naimark, M.A., Lineinye differentsial’nye operatory (Linear Differential Operators), Moscow: Nauka, 1969.Google Scholar
  30. 30.
    Bravyi, E.I., Razreshimost’ kraevykh zadach dlya lineinykh funktsional’no-differentsial’nykh uravnenii (Solvability of Boundary Value Problems for Linear Functional Differential Equations), Moskva–Izhevsk, 2011.Google Scholar
  31. 31.
    Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow: Gosudarstv. Izdat. Fiz.-Mat. Lit., 1963.Google Scholar
  32. 32.
    Handboook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Abramowitz, M. and Stegun, I.M., Eds., National Bureau of Standards, Applied Mathematical Series, no. 55, 1964. Translated under the title Spravochnik po spetsial’nym funktsiyam sformulami, grafikami i matematicheskimi tablitsami, Moscow: Nauka, 1979.Google Scholar
  33. 33.
    Lehmer, D.H., On the Maxima and Minima of Bernoulli Polynomials, Amer. Math. Monthly, 1940, vol. 47, no. 8, pp. 533–538.zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Yorke, J., Periods of Periodic Solutions and the Lipschitz Constant, Proc. Amer. Math. Soc., 1969, vol. 22, pp. 509–512.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Perm National Research Polytechnic UniversityPermRussia

Personalised recommendations