Skip to main content
Log in

Constructive theory of scalar characteristic equations of the theory of radiation transport: I. Basic assertions of the theory and conditions for the applicability of the truncation method

  • Integral Equations
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We describe a number of general properties of solutions of the scalar characteristic equations in the radiation transport theory and state constructive necessary and sufficient conditions for the nontrivial solvability of these equations in the framework of assumptions under which they are Fredholm integral equations. The construction of solutions of these integral equations in analytic form can be reduced to finding solutions of infinite tridiagonal systems of linear algebraic equations. We study the analytic properties of solutions of such systems and derive sufficient conditions for the applicability of the truncation method for the construction of their strict solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yanovitskij, E.G., Light Scattering in an Inhomogeneous Atmosphere, New York, 1997.

    Book  Google Scholar 

  2. Rogovtsov, N.N., General Invariance Relations Reduction Method and Its Applications to Solutions of Radiative Transfer Problems for Turbid Media of Various Configurations, in Light Scattering Reviews, Kokhanovsky, A.A., Ed., Chichester, 2010, vol. 5, pp. 249–327.

    Article  Google Scholar 

  3. Marchuk, G.I. and Lebedev, V.I., Chislennye metody v teorii perenosa neitronov (Numerical Method in Neutron Transport Theory), Moscow: Atomizdat, 1971.

    Google Scholar 

  4. Ganapol, B.D., Analytical Benchmarks for Nuclear Engineering Application, Paris, 2008.

    Google Scholar 

  5. Dolginov, A.Z., Gnedin, Yu.N., and Silant’ev, N.A., Propagation and Polarization of Radiation in Cosmic Media, Amsterdam, 1995.

    Google Scholar 

  6. Bekefi, G., Radiation Processes in Plasmas, New York, 1966.

    Google Scholar 

  7. Rogovtsov, N.N., Svoistva i printsipy invariantnosti. Prilozhenie k resheniyu zadach matematicheskoi fiziki (Properties and Principles of Invariance. Application to Solution of Problems of Mathematical Physics), Minsk, 1999, part 1.

    Google Scholar 

  8. Maslennikov, M.A., The Milne Problem with Anisotropic Scattering, Tr. Mat. Inst. Steklova, 1968, vol. 47, pp. 3–132.

    MathSciNet  Google Scholar 

  9. Rogovtsov, N.N. and Borovik, F.N., The Characteristic Equation of Radiative Transfer Theory, in Light Scattering Reviews, Kokhanovsky, A.A., Ed., Chichester, 2009, vol. 4, pp. 347–429.

    Article  Google Scholar 

  10. Rogovtsov, N.N., Reconstruction of the Internal Radiation Field Distribution from Its Characteristics at the Scattering Medium Boundaries, Izv. Akad. Nauk SSSR Fiz. Atmosf. Okeana, 1980, vol. 16, no. 3, pp. 244–253.

    MathSciNet  Google Scholar 

  11. Rogovtsov, N.N., Reconstruction of Relationship between Radiation Fields Inside a Scattering Object of an Arbitrary Configuration and on Its Boundary on the Basis of the Method of Partially Invariant Imbedding, Zh. Prikl. Spektrosk., 1981, vol. 34, no. 2, pp. 335–347.

    Google Scholar 

  12. Rogovtsov, N.N., On Some Applications of General Principle of Invariance to the Theory of Radiation Transport, Zh. Prikl. Spektrosk., 1981, vol. 35, no. 6, pp. 1044–1050.

    Google Scholar 

  13. Rogovtsov, N.N., Application of the Invariance Principles for Media of Arbitrary Configuration: Algebraic Treatment, Applications, Tr. vsesoyuz. simp. “Printsip invariantnosti i ego prilozheniya” (Proc. All-Union Symp. “Invariance Principles and Its Applications”), Mnatsakanyan, M.A. and Pikichyan, O.V., Eds., Erevan, 1989, pp. 120–134.

    Google Scholar 

  14. Rogovtsov, N.N., On the Solution of the Cauchy Problem for Infinite Systems of Differential Equations That Describe the Process of Multiphoton Collisionless Excitation of Molecules, Differ. Uravn., 1990, vol. 26, no. 4, pp. 600–607.

    MathSciNet  Google Scholar 

  15. Rogovtsov, N.N., Relationship between Solutions of Families of Two-Point Boundary Value Problems and Cauchy Problems, Differ. Uravn., 2008, vol. 44, no. 9, pp. 1205–1221.

    MathSciNet  Google Scholar 

  16. Rogovtsov, N.N., Radiation Transport in Scattering Media of Various Configuration, in Rasseyanie i pogloshchenie sveta v prirodnykh i iskusstvennykh dispersnykh sredakh (Light Scattering and Absorption in Natural and Artificial Dispersion Media), Ivanov, A.P., Ed., Minsk, 1991, pp. 58–81.

    Google Scholar 

  17. Case, K.M. and Zweifel, P.F., Linear Transport Theory, Reading, MA, 1967.

    MATH  Google Scholar 

  18. Rogovtsov, N.N., On the Solution of the Characteristic Equation of the Theory of Radiation Transport in a Closed Form, Tr. mezhdunar. konf. “Kraevye zadachi, spetsial’nye funktsii i drobnoe ischislenie” (Proc. Int. Conf. “Boundary Value Problems, Special Functions, and Fractional Calculus”), Kilbas, A.A., Ed., Minsk, 1996, pp. 305–312.

    Google Scholar 

  19. Germogenova, T.A. and Shulaya, D.A., The Characteristic Equation of Radiation Transfer Theory, Dokl. Akad. Nauk SSSR, 1976, vol. 231, no. 4, pp. 841–844.

    MathSciNet  Google Scholar 

  20. Germogenova, T.A., On the Completeness of System of Eigenfunctions of Characteristic Equation of Transport Theory, Preprint Inst. Appl. Math., Moscow, 1976, no. 103.

    Google Scholar 

  21. Rozanov, V.V. and Lyapustin, A.I., Similarity of Radiative Transfer Equation: Error Analysis of Phase Function Truncation Techniques, J.Q.S.R.T., 2010, vol. 111, no. 12–13, pp. 1964–1979.

    Google Scholar 

  22. Gakhov, F.D., Kraevye zadachi (Boundary Value Problems), Moscow: Nauka, 1977.

    MATH  Google Scholar 

  23. Riesz, F. and Sz.-Nagy, B., Lecons d’analyse fonctionelle, Budapest: Academiai Kiado, 1977. Translated under the title Lektsii po funktsional’nomu analizu, Moscow: Mir, 1977.

    Google Scholar 

  24. Natanson, I.P., Teoriya funktsii veshchestvennoi peremennoi (Theory of Functions of a Real Variable), Moscow: Nauka, 1974.

    Google Scholar 

  25. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1966.

    Google Scholar 

  26. Lavrent’ev, M.A. and Shabat, B.V., Metody teorii funktsii kompleksnogo peremennogo (Methods of the Theory of Functions of a Complex Variable), Moscow: Nauka, 1965.

    Google Scholar 

  27. Perron, O., On A. Poincare’s Theorem, J. Reine Angew. Math., 1910, vol. 137, pp. 6–64.

    Google Scholar 

  28. Jones, W.B. and Thron, W.J., Continued Fractions. Analytic Theory and Applications, Reading: Addison-Wesley Publ., 1980. Translated under the title Nepreryvnye drobi. Analiticheskaya teoriya i prilozheniya, Moscow: Mir, 1985.

    Google Scholar 

  29. Demidovich, B.P. and Maron, I.A., Osnovy vychislitel’noi matematiki (Foundations of Numerical Analysis), Moscow: Gosudarstv. Izdat. Fiz.-Mat. Lit., 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Rogovtsov.

Additional information

Original Russian Text © N.N. Rogovtsov, 2015, published in Differentsial’nye Uravneniya, 2015, Vol. 51, No. 2, pp. 263–276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogovtsov, N.N. Constructive theory of scalar characteristic equations of the theory of radiation transport: I. Basic assertions of the theory and conditions for the applicability of the truncation method. Diff Equat 51, 268–281 (2015). https://doi.org/10.1134/S0012266115020111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266115020111

Keywords

Navigation