Skip to main content
Log in

On the convexity of reachability sets of controlled initial-boundary value problems

  • Control Theory
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

For a functional-operator equation describing a broad class of controlled initial-boundary value problems, we introduce the notion of abstract reachability set. We obtain sufficient conditions for the convexity and precompactness of that set. The situation of a Nash ɛ-equilibrium is justified in the sense of program strategies in noncooperative functional-operator games with many players. As an example of reduction of a controlled initial-boundary value problem to the equation under study, we consider the Cauchy problem for a semilinear wave equation with two space variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chernous’ko, F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov (Estimation of the Phase State of Dynamical Systems. Method of Ellipsoids), Moscow, 1988.

    MATH  Google Scholar 

  2. Zuazua, E., Controllability and Observability of Partial Differential Equations: Some Results and Open Problems. Handbook of Differential Equations: Evolutionary Equations, vol. III. Amsterdam, 2007, pp. 527–621.

    Google Scholar 

  3. Unsolved Problems in Mathematical Systems and Control Theory, Blondel, V.D. and Megretski, A., Eds., Princeton; Oxford, 2004.

    MATH  Google Scholar 

  4. Petrosyan, L.A. and Zakharov, V.V., Vvedenie v matematicheskuyu ekologiyu (Introduction to Mathematical Ecology), Leningrad: Leningrad. Univ., 1986.

    Google Scholar 

  5. Vorob’ev, N.N., Teoriya igr dlya ekonomistov-kibernetikov (Game Theory for Economists and Cybernetics), Moscow: Nauka, 1985.

    Google Scholar 

  6. Egorov, A.I., Osnovy teorii upravleniya (Foundations of the Control Theory), Moscow, 2005.

    Google Scholar 

  7. Vakhrameev, S.A., A Remark on the Convexity in Smooth Nonlinear Systems, Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Optim. Upravl. 1, 1999, vol. 60, pp. 42–73.

    Google Scholar 

  8. Topunov, M.V., Convexity of Reachable Sets of a Smooth Linear Control System in Phase Variables, Automation and Remote Control, 2004, vol. 65, no. 11, pp. 1761–1766.

    Article  MATH  MathSciNet  Google Scholar 

  9. Polyak, B., Convexity of the Reachable Set of Nonlinear Systems under L2 Bounded Controls, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal., 2004, vol. 11, no. 2–3, pp. 255–268.

    MATH  MathSciNet  Google Scholar 

  10. Reißig, G., Convexity of Reachable Sets of Nonlinear Ordinary Differential Equations, Automation and Remote Control, 2007, vol. 68, no. 9, pp. 1527–1543.

    Article  MATH  MathSciNet  Google Scholar 

  11. Cannarsa, P. and Sinestrari, C., Convexity Properties of the Minimum Time Function, Calc. Var. Partial Differential Equations, 1995, vol. 3, no. 3, pp. 273–298.

    Article  MATH  MathSciNet  Google Scholar 

  12. Krabs, W., Sklyar, G.M., and Wozniak, J., On the Set of Reachable States in the Problem of Controllability of Rotating Timoshenko Beams, J. Anal. Appl., 2003, vol. 22, no. 1, pp. 215–228.

    MATH  MathSciNet  Google Scholar 

  13. Djebali, S., Gorniewicz, L., and Ouahab, A., First-Order Periodic Impulsive Semilinear Differential Inclusions: Existence and Structure of Solution Sets, Math. Comput. Modelling, 2010, vol. 52, no. 5–6, pp. 683–714.

    Article  MATH  MathSciNet  Google Scholar 

  14. Tolstonogov, A.A., Differentsial’nye vklyucheniya v banakhovom prostranstve (Differential Inclusions in a Banach Space), Novosibirsk: Nauka, 1986.

    Google Scholar 

  15. Chernov, A.V., On Volterra Functional Operator Games on a Given Set, Automation and Remote Control, 2014, vol. 75, no. 4, pp. 787–803.

    Article  Google Scholar 

  16. Chernov, A.V., A Majorant Criterion for the Total Preservation of Global Solvability of Controlled Functional Operator Equation, Russian Math., 2011, vol. 55, no. 3, pp. 85–95.

    Article  MATH  MathSciNet  Google Scholar 

  17. Chernov, A.V., A Majorant-MinorantCriterion for the Total Preservation of Global Solvability of a Functional Operator Equation, Russian Math., 2012, vol. 56, no. 3, pp. 55–65.

    Article  MATH  MathSciNet  Google Scholar 

  18. Chernov, A.V., Sufficient Conditions for the Controllability of Nonlinear Distributed Systems, Comput. Math. Math. Phys., 2012, vol. 52, no. 8, pp. 1115–1127.

    Article  Google Scholar 

  19. Chernov, A.V., On the Convergence of the Conditional Gradient Method in Distributed Optimization Problems, Comput. Math. Math. Phys., 2011, vol. 51, no. 9, pp. 1510–1523.

    Article  MathSciNet  Google Scholar 

  20. Chernov, A.V., On the Existence of an ɛ-Equilibrium in Volterra Functional-Operator Games without Discrimination, Mat. Teor. Igr Prilozh., 2012, vol. 4, no. 1, pp. 74–92.

    MATH  MathSciNet  Google Scholar 

  21. Kurzhanskii, A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti (Control and Observation under Conditions of Uncertainty), Moscow: Nauka, 1977.

    MATH  Google Scholar 

  22. Gurman, V.I. and Trushkova, E.A., Estimates for Attainability Sets of Control Systems, Differential Equations, 2009, vol. 45, no. 11, pp. 1636–1644.

    Article  MATH  MathSciNet  Google Scholar 

  23. Chernov, A.V., On the Convexity of Global Solvability Sets for Controlled Initial-Boundary Value Problems, Differential Equations, 2012, vol. 48, no. 4, pp. 586–595.

    Article  MATH  Google Scholar 

  24. Mordukhovich, B.Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya (Approximation Methods in Problems of Optimization and Control), Moscow: Nauka, 1988.

    Google Scholar 

  25. Kantorovich, L.V. and Akilov, G.P., Funktsional’nyi analiz (Functional Analysis), Moscow: Nauka, 1984.

    Google Scholar 

  26. Fedorov, V.M., Kurs funktsional’nogo analiza (The Course of Functional Analysis), St. Petersburg, 2005.

    Google Scholar 

  27. Sukharev, A.G., Timokhov, A.V., and Fedorov, V.V., Kurs metodov optimizatsii (Course of Optimization Methods), Moscow, 2005.

    Google Scholar 

  28. Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of the Theory of Functions and Functional Analysis), Moscow: Nauka, 1976.

    Google Scholar 

  29. Krasnosel’skii, M.A., Topologicheskie metody v teorii nelineinykh integral’nykh uravnenii (Topological Methods in the Theory of Nonlinear Integral Equations), Moscow: Gosudarstv. Izdat. Tekhn.-Teor. Lit., 1956.

    Google Scholar 

  30. Kleimenov, A.F., Universal Solution in a Nonantogonistic Positional Differential Game with Vector Criteria, Tr. Inst. Mat. Mekh. Ural. Otdel. RAN, 1992, vol. 1, pp. 97–105.

    MATH  MathSciNet  Google Scholar 

  31. Mikhailov, V.P., Differentsial’nye uravneniya v chastnykh proizvodnykh (Partial Differential Equations), Moscow: Nauka, 1976.

    Google Scholar 

  32. Ladyzhenskaya, O.A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya (Mixed Problem for a Hyperbolic Equation), Moscow: Gosudarstv. Izdat. Tekhn.-Teor. Lit., 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernov.

Additional information

Original Russian Text © A.V. Chernov, 2014, published in Differentsial’nye Uravneniya, 2014, Vol. 50, No. 5, pp. 702–712.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, A.V. On the convexity of reachability sets of controlled initial-boundary value problems. Diff Equat 50, 700–710 (2014). https://doi.org/10.1134/S0012266114050127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266114050127

Keywords

Navigation