Skip to main content
Log in

Method of limiting equations for the stability analysis of equations with infinite delay in the Carathéodory conditions: I

  • Ordinary Differential Equations
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider systems of nonautonomous nonlinear differential equations with infinite delay. We introduce Carathéodory type conditions for the right-hand side in an equation, which permit one, on the one hand, to cover a fairly broad class of systems and, on the other hand, include the right-hand side in a compact function space and construct the so-called limiting equations. In the investigation, we use the construction of admissible spaces with fading memory, which permits one to obtain constructive results for the class of equations under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hale, J. and Kato, J., Phase Space for Retarded Equations with Infinite Delay, Funkcial. Ekvac., 1978, vol. 21, pp. 11–41.

    MATH  MathSciNet  Google Scholar 

  2. Kappel, F. and Schappacher, W., Some Considerations to the Fundamental Theory of Infinite Delay Equations, J. Differential Equations, 1980, vol. 37, pp. 141–183.

    Article  MATH  MathSciNet  Google Scholar 

  3. Schumacher, K., Existence and Continuos Dependence for Functional Differential Equations with Unbounded Delay, Arch. Ration. Mech. Anal., 1978, vol. 67, pp. 315–335.

    Article  MATH  MathSciNet  Google Scholar 

  4. Basova, M.M. and Obukhovskii, V.V., General Boundary Value Problem for Functional-Differential Inclusions with Infinite Delay, Vestn. Voronezh. Gos. Univ. Fiz. Mat. 2007, no. 1, pp. 121–129.

    Google Scholar 

  5. Liang, J. and Xiao, T.J., Solutions to Nonautonomous Abstract Functional Differential Equations with Infinite Delay, Taiwanese J. Math., 2006, vol. 10, no. 1, pp. 163–172.

    MATH  MathSciNet  Google Scholar 

  6. Andreev, A.S., Ustoichivost’ neavtonomnykh funktsional’no-differentsial’nykh uravnenii (Stability of Nonautonomous Functional-Differential Equations), Ul’yanovsk, 2005.

    Google Scholar 

  7. Martynyuk, A.A., Kato, D., and Shestakov, A.A., Ustoichivost’ dvizheniya: metod predel’nykh uravnenii (Stability of Motion: Method of Limiting Equations), Kiev, 1990.

    Google Scholar 

  8. Martynyuk, A.A. and Shestakov, A.A., Stability of Motion of Nonautonomous Systems (Method of Limiting Equations), Amsterdam, 1996.

    MATH  Google Scholar 

  9. Hino, Y., Stability Properties for Functional Differential Equations with Infinite Delay, Tohoku Math. J., 1983, vol. 35, pp. 597–605.

    Article  MATH  MathSciNet  Google Scholar 

  10. Kato, J., Asymptotic Behavior in Functional Differential Equations with Infinite Delay, Lecture Notes in Math., 1982, vol. 1017, pp. 300–312.

    Article  Google Scholar 

  11. Murakami, S., Perturbation Theorems for Functional Differential Equations with Infinite Delay via Limiting Equations, J. Differential Equations, 1985, vol. 59, pp. 314–335.

    Article  MATH  MathSciNet  Google Scholar 

  12. Lizama, C. and Nǵuenrekata, G.N., Bounded Mild Solutions for Semilinear Integro-Differential Equations in Banach Spaces, Integral Equations Operator Theory, 2010, vol. 68, no. 2, pp. 207–227.

    Article  MATH  MathSciNet  Google Scholar 

  13. Sedova, N.O., On the Lyapunov-Razumikhin Method for Equations with Infinite Delay, Differ. Uravn., 2002, vol. 38, no. 10, pp. 1338–1347.

    MathSciNet  Google Scholar 

  14. Sedova, N.O., On the Development of the Direct Lyapunov Method for Functional-Differential Equations with Infinite Delay, Mat. Zametki, 2008, vol. 84, no. 6, pp. 888–906.

    Article  MathSciNet  Google Scholar 

  15. Shestakov, A.A., Obobshchennyi pryamoi metod Lyapunova dlya sistem s raspredelennymi parametrami (Generalized Direct Lyapunov Method for Systems with Distributed Parameters), Moscow, 2007.

    Google Scholar 

  16. Druzhinina, O.V. and Shestakov, A.A., The Generalized Direct Lyapunov Method for Investigating Stability and Attraction for General Nonautonomous Systems, Mat. Sb., 2002, vol. 193, no. 10, pp. 17–47.

    Article  MathSciNet  Google Scholar 

  17. Artstein, Z., Topological Dynamics of Ordinary Differential Equations, J. Differential Equations, 1977, vol. 23, pp. 216–223.

    Article  MATH  MathSciNet  Google Scholar 

  18. Haddock, J. and Hornor, W., Precompactness and Convergence in Norm of Positive Orbits in a Certain Fading Memory Space, Funkcial. Ekvac., 1988, vol. 31, pp. 349–361.

    MATH  MathSciNet  Google Scholar 

  19. Hino, Y. and Murakami, S., Stability Properties of Linear Volterra Equations, J. Differential Equations, 1991, vol. 89, pp. 121–137.

    Article  MATH  MathSciNet  Google Scholar 

  20. Murakami, S., Stability in Functional Differential Equations with Infinite Delay, Tohoku Math. J., 1985, vol. 36, pp. 561–570.

    Article  Google Scholar 

  21. Parrot, M., The Limiting Behavior of Solutions of Infinite Delay Differential Equations, J. Math. Anal. Appl., 1982, vol. 87, pp. 603–627.

    Article  MathSciNet  Google Scholar 

  22. Hino, Y., Murakami, S., and Naito, T., Functional Differential Equations with Infinite Delay, Lecture Notes in Math., 1991, vol. 1473.

  23. Kato, J., Stability Problem in Functional Differential Equations with Infinite Delay, Funkcial. Ekvac., 1978, vol. 21, pp. 63–80.

    MATH  MathSciNet  Google Scholar 

  24. Kato, J., Stability in Functional Differential Equations, Lecture Notes in Math., 1980, vol. 799, pp. 252–262.

    Article  Google Scholar 

  25. Murakami, S. and Naito, T., Fading Memory Spaces and Stability Properties for Functional Differential Equations with Infinite Delay, Funkcial. Ekvac., 1989, vol. 32, pp. 91–105.

    MATH  MathSciNet  Google Scholar 

  26. Naito, T., On Linear Autonomous Retarded Equations with an Abstract Phase Space for Infinite Delay, J. Differential Equations, 1979, vol. 33, pp. 74–91.

    Article  MATH  MathSciNet  Google Scholar 

  27. Haddock, J., Friendly Spaces for Functional Differential Equations with Infinite Delay, in Trends in the Theory and Practice of Non-Linear Analisys, Lakshmikantham, V., Ed., North-Holland, 1985, pp. 173–183.

    Google Scholar 

  28. Haddock, J. and Terjéki, J., On the Location of Positive Limit Sets for Autonomous Functional Differential Equations with Infinite Delay, J. Differential Equations, 1990, vol. 86, pp. 1–32.

    Article  MATH  MathSciNet  Google Scholar 

  29. Seifert, G., On Caratheodory Conditions for Functional Differential Equations with Infinite Delays, Rocky Mountain J. Math., 1982, vol. 12, no. 4, pp. 615–619.

    Article  MATH  MathSciNet  Google Scholar 

  30. Burton, T.A. and Youhe, F., Continuity in Functional Differential Equations with Infinite Delay, Acta Math. Appl. Sin., 1991, vol. 7, no. 3, pp. 229–244.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Druzhinina.

Additional information

Original Russian Text © O.V. Druzhinina, N.O. Sedova, 2014, published in Differentsial’nye Uravneniya, 2014, Vol. 50, No. 5, pp. 572–583.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Druzhinina, O.V., Sedova, N.O. Method of limiting equations for the stability analysis of equations with infinite delay in the Carathéodory conditions: I. Diff Equat 50, 569–580 (2014). https://doi.org/10.1134/S0012266114050012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266114050012

Keywords

Navigation