On some classes of fourth-order Bianchi equations with constant ratios of Laplace invariants


On the basis of defining equations written out in terms of Laplace invariants, we single out some classes of fourth-order Bianchi equations similar to the well-known classes of hyperbolic equations with two independent variables admitting Lie algebras of maximum dimension.

This is a preview of subscription content, access via your institution.


  1. 1.

    Fage, M.K., The Cauchy Problem for the Bianchi Equation, Mat. Zametki, 1958, vol. 45, no. 3, pp. 281–322.

    MathSciNet  Google Scholar 

  2. 2.

    Zhegalov, V.I. and Mironov, A.N., Differentsial’nye uravneniya so starshimi chastnymi proizvodnymi (Differential Equations with Higher Partial Derivatives), Kazan, 2001.

    Google Scholar 

  3. 3.

    Mironov, A.N., On the Laplace Invariants of a Fourth-Order Equation, Differ. Uravn., 2009, vol. 45, no. 8, pp. 1144–1149.

    MathSciNet  Google Scholar 

  4. 4.

    Dzhokhadze, O.M., On Laplace Invariants for Some Classes of Linear Partial Differential Equations, Differ. Uravn., 2004, vol. 40, no. 1, pp. 58–68.

    MathSciNet  Google Scholar 

  5. 5.

    Zhegalov, V.I., On the Three-Dimensional Riemann Function, Sibirsk. Mat. Zh., 1997, vol. 38, no. 5, pp. 1074–1079.

    MathSciNet  Google Scholar 

  6. 6.

    Mironov, A.N., On the Construction of the Riemann Function for a Fourth-Order Equation, Differ. Uravn., 2001, vol. 37, no. 12, pp. 1698–1701.

    MathSciNet  Google Scholar 

  7. 7.

    Zhegalov, V.I., On Solvability Cases for Hyperbolic Equations in Quadratures, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 7, pp. 47–52.

    Google Scholar 

  8. 8.

    Tricomi, F., Lezioni sulle equazioni a derivate parziali, Turin, 1954. Translated under the title Lektsii po uravneniyam v chastnykh proizvodnykh, Moscow: Inostrannaya literatura, 1957.

    MATH  Google Scholar 

  9. 9.

    Ovsyannikov, L.V., Gruppovoi analiz differentsial’nykh uravnenii (Group Analysis of Differential Equations), Moscow: Nauka, 1978.

    Google Scholar 

  10. 10.

    Ibragimov, N.Kh., Group Analysis of Ordinary Differential Equations and the Invariance Principle in Mathematical Physics, Uspekhi Mat. Nauk, 1992, vol. 47, no. 4, pp. 83–144.

    MATH  MathSciNet  Google Scholar 

  11. 11.

    Lagno, V.I., Spichak, S.V., and Stognii, V.I., Simmetriinyi analiz uravnenii evolyutsionnogo tipa (Symmetry Analysis of Equations of Evolution Type), Moscow, 2004.

    Google Scholar 

  12. 12.

    Utkina, E.A., On a Partial Differential Equation with Singular Coefficients, Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 9, pp. 67–70.

    Google Scholar 

  13. 13.

    Utkina, E.A., On an Application of the Cascade Integration Method, Differ. Uravn., 2007, vol. 43, no. 4, pp. 566–569.

    MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. N. Mironov.

Additional information

Original Russian Text © A.N. Mironov, 2013, published in Differentsial’nye Uravneniya, 2013, Vol. 49, No. 12, pp. 1572–1581.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mironov, A.N. On some classes of fourth-order Bianchi equations with constant ratios of Laplace invariants. Diff Equat 49, 1524–1533 (2013). https://doi.org/10.1134/S0012266113120070

Download citation


  • Poisson Equation
  • Hyperbolic Equation
  • Maximum Dimension
  • Riemann Function
  • Laplace Invariant