Skip to main content

Optimization of a Low-Thrust Heliocentric Trajectory between the Collinear Libration Points of Different Planets


The aim of this study is to optimize a low-thrust interplanetary trajectory using collinear libration points L1 and L2 as the junction points of the geocentric or planetocentric segments of the trajectory with the heliocentric segment. The problem of optimizing the heliocentric segment of perturbed low-thrust interplanetary transfer is considered in the four-body ephemeris model, which includes the Sun, Earth, target planet, and spacecraft. To optimize the trajectories, an indirect approach is used based on Pontryagin’s maximum principles and the continuation method. The possibility of reducing the characteristic velocity in comparison with the estimates obtained through the method of zero sphere of influence is shown.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.


  1. Topputo, F. and Belbruno, E., Earth–Mars transfers with ballistic capture, Celestial Mech. Dyn. Astron., 2015, vol. 121, no. 4, pp. 329–346.

    Article  ADS  MathSciNet  Google Scholar 

  2. Mingotti, G., Topputo, F., and Bernelli-Zazzera, F., Earth–Mars transfers with ballistic escape and low-thrust capture, Celestial Mech. Dyn. Astron., 2011, vol. 110, no. 2, pp. 169–188.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Mingotti, G. and Gurfil, P., Mixed low-thrust invariant-manifold transfers to distant prograde orbits around Mars, J. Guid., Control, Dyn., 2010, vol. 33, no. 6, pp. 1753–1764.

    Article  ADS  Google Scholar 

  4. Topputo, F., Vasile, M., and Bernelli-Zazzera, F., Low energy interplanetary transfers exploiting invariant manifolds of the restricted three-body problem, Astronaut. Sci., 2005, vol. 53, no. 4, pp. 353–372.

    Article  MathSciNet  Google Scholar 

  5. Ovchinnikov, M., Interplanetary small-satellite missions: Ballistic problems and their solutions, Gyrosc. Navig., 2021, vol. 12, no. 4, pp. 281–293.

    Article  Google Scholar 

  6. Lo, M. and Ross, S., The lunar L 1 gateway: Portal to the stars and beyond, AIAA Space 2001 Conference, Albuquerque, NM, August 28–30, 2001.

  7. Ross, S., Koon, W., Lo, M.W., et al., Design of a multi-moon orbiter, 13th AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, February 9–13, 2003, p. AAS 03-143.

  8. Loeb, H., Petukhov, V., Popov, G.A., et al., A realistic concept of a manned Mars mission with nuclear-electric propulsion, Acta Astronaut., 2015, vol. 116, pp. 299–306.

    Article  Google Scholar 

  9. Petukhov, V. and Yoon, S.W., End-to-end optimization of power-limited Earth–Moon trajectories, Aerospace, 2023, vol. 10, no. 3, p. 231.

    Article  Google Scholar 

  10. Petukhov, V.G., One numerical method to calculate optimal power-limited trajectories, Int. Electric Propulsion Conf. IEPC-95-221, Moscow, 1995, pp. 1474–1480.

  11. Petukhov, V.G., Optimization of interplanetary trajectories for spacecraft with ideally regulated engines using the continuation method, Cosmic Res., 2008, vol. 46, no. 3, pp. 219–232.

    Article  ADS  Google Scholar 

  12. Petukhov, V.G., Method of continuation for optimization of interplanetary low-thrust trajectories, Cosmic Res., 2012, vol. 50, no. 3, pp. 249–261.

    Article  ADS  Google Scholar 

  13. Haberkorn, T., Martinon, P., and Gergaud, J., Low thrust minimum-fuel orbital transfer: A homotopic approach, J. Guid., Control, Dyn., 2004, vol. 27, no. 6, pp. 1046–1060.

    Article  ADS  Google Scholar 

  14. Jiang, F., Baoyin, H., and Li, J., Practical techniques for low-thrust trajectory optimization with homotopic approach, J. Guid., Control, Dyn., 2012, vol. 35, no. 1, pp. 245–258.

    Article  ADS  Google Scholar 

  15. Petukhov, V., Ivanyukhin, A., Popov, G., et al., Optimization of finite-thrust trajectories with fixed angular distance, Acta Astronaut., 2022, vol. 197, pp. 354–367.

    Article  ADS  Google Scholar 

  16. Petukhov, V.G. and Yoon, S.W., Optimization of perturbed spacecraft trajectories using complex dual numbers. Part. 1: Theory and method, Cosmic Res., 2021, vol. 59, no. 5, pp. 401–413.

    Article  ADS  Google Scholar 

  17. Dargent, T., Automatic minimum principle formulation for low thrust optimal control in orbit transfers using complex numbers, Proc. 21st Int. Symp. Space Flights Dynamics, Toulouse, France, September 28–October 2, 2009.

  18. Dargent, T., An integrated tool for low thrust optimal control orbit transfers in interplanetary trajectories, Proc. 18th Int. Symp. Space Flight Dynamics, Munich, Germany, October 11–15, 2004, ESA SP-548, p. 143.

  19. Bertrand, R. and Epenoy, R., CNES Technical note no. 147, December 2002, p. 36.

Download references


This study was supported by the grant of the Russian Science Foundation “Development of the Theory and Methods for Designing the Trajectories of Spacecraft with High- and Low-Thrust Propulsion Systems,” no. 22-19-00329,

Author information

Authors and Affiliations


Corresponding authors

Correspondence to V. G. Petukhov or S. W. Yoon.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petukhov, V.G., Yoon, S.W. Optimization of a Low-Thrust Heliocentric Trajectory between the Collinear Libration Points of Different Planets. Cosmic Res 61, 418–430 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: