Skip to main content
Log in

A Lunar Printer Experiment on Laser Fusion of the Lunar Regolith in the Luna-Grunt Space Project

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This paper presents the results of laboratory studies on the use of a new technology of selective laser melting to obtain experimental products from the lunar regolith without special additives. The main properties of the natural regolith, which significantly affect the fusion process, are determined. The first samples of a given geometry were obtained from labradorite and gabbro-diabase powders, which are natural analogues of lunar regolith, using this technology. The research results are planned to be used in the preparation of initial data for the development of the Lunar Printer space device as part of the complex of scientific equipment of the promising lunar project Luna-Grunt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Mitrofanov, I.G., About the exploration of the Moon. Russian cosmism, the lunar race and the discovery of the “new Moon,” Zemlya i Vselennaya, 2019, no. 1, pp. 5–17. https://doi.org/10.7868/S0044394819010018

  2. Mitrofanov, I.G. and Zelenyi, L.M., About the exploration of the Moon. Plans and immediate prospects, Zemlya i Vselennaya, 2019, no. 4, pp. 16–37. https://doi.org/10.7868/S0044394819040029

  3. Feldman, W.C., Maurice, S., Binder, A.B., et al., Fluxes of fast and epithermal neutrons from lunar prospector: Evidence for water ice at the lunar poles, Science, 1998, vol. 281, no. 5382, pp. 1496–1500. https://doi.org/10.1126/science.281.5382.149

    Article  ADS  Google Scholar 

  4. Pieters, C.M., Goswami, J.N., Clark, R.N., et al., Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1, Science, 2009, vol. 326, no. 5952, pp. 568–572. https://doi.org/10.1126/science.1178658

    Article  ADS  Google Scholar 

  5. Mitrofanov, I.G., Sanin, A.B., Boynton, W.V., et al., Hydrogen mapping of the lunar south pole using the LRO Neutron Detector Experiment LEND, Science, 2010, vol. 330, no. 6003, pp. 483–486. https://doi.org/10.1126/science.1185696

    Article  ADS  Google Scholar 

  6. Colaprete, A., Schultz, P., Heldmann, J., et al., Detection of water in the LCROSS ejecta plume, Science, 2010, vol. 330, no. 6003, pp. 463–468. https://doi.org/10.1126/science.1186986

    Article  ADS  Google Scholar 

  7. Petro, N.E. and Pieters, C.M., Surviving the heavy bombardment: Ancient material at the surface of South Pole–Aitken Basin, J. Geophys. Res. Atmos., 2004, vol. 109, p. E06004. https://doi.org/10.1029/2003JE002182

    Article  ADS  Google Scholar 

  8. Cesaretti, G., Dini, E., Kestelier, X.D., et al., Building components for an outpost on the lunar soil by means of a novel 3D printing technology, Acta Astronaut., 2014, vol. 93, pp. 430–450. https://doi.org/10.1016/j.actaastro.2013.07.034

    Article  ADS  Google Scholar 

  9. Taylor, S.L., Jakus, A.E., Koube, K.D., et al., Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks, Acta Astronaut., 2018, vol. 143, pp. 1–8. https://doi.org/10.1016/j.actaastro.2017.11.005

    Article  ADS  Google Scholar 

  10. Goulas, A., Binner, J.G.P., Engstrom, D.S., et al., Mechanical behaviour of additively manufactured lunar regolith simulant components, Proc. IMechE Part L: J. Mater.: Des. Appl., 2018, vol. 233, no. 8, pp. 1629–1644. https://doi.org/10.1177/1464420718777932

    Article  Google Scholar 

  11. Caprio, L., Demir, A.G., and Previtali, B., Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion, Addit. Manuf., 2020, vol. 32, p. 101029. https://doi.org/10.1016/j.addma.2019.101029

    Article  Google Scholar 

  12. Kornuta, D., Abbud-Madrid, A., Atkinson, J., et al., Commercial lunar propellant architecture: A collaborative study of lunar propellant production, Reach, 2019, vol. 13, p. 100026. https://doi.org/10.1016/j.reach.2019.100026

    Article  Google Scholar 

  13. Florenskii, K.P., Lunnyi grunt: svoistva i analogi (Lunar Soil: Properties and Analogues), Moscow: Akad. Nauk SSSR. Inst. Geokhim. Anal. Khim. im. V.I. Vernadskogo, 1975.

  14. Carrier, W.D., Olhoeft, G.R., and Mendell, W., Physical properties of the lunar surface, in Lunar Sourcebook: A User’s Guide to the Moon, Cambridge: Cambridge Univ. Press, 1991.

    Google Scholar 

  15. Taylor, L.A., Pieters, C.M., and Britt, D., Evaluations of lunar regolith simulants, Planet. Space Sci., 2016, vol. 126, pp. 1–7. https://doi.org/10.1016/j.pss.2016.04.005

    Article  ADS  Google Scholar 

  16. Slyuta, E.N., Grishakina, E.A., Makobchuk, V.Y., et al., Lunar soil-analogue VI-75 for large-scale experiments, Acta Astronaut., 2021, vol. 187, pp. 447–457. https://doi.org/10.1016/j.actaastro.2021.06.047

    Article  ADS  Google Scholar 

  17. Grugel, R.N., Sulfur “concrete” for lunar applications—sublimation concerns, Adv. Space Res., 2008, vol. 41, no. 1, pp. 103–112. https://doi.org/10.1016/j.asr.2007.08.018

    Article  ADS  Google Scholar 

  18. Fateri, M. and Gebhardt, A., Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications, Int. J. Appl. Ceram. Technol., 2015, vol. 12, no. 1, pp. 46–52. https://doi.org/10.1111/ijac.12326

    Article  Google Scholar 

  19. Goulas, A. and Friel, R.J., 3D printing with moondust, Rapid Prototyp. J., 2016, vol. 22, no. 6, pp. 864–870. https://doi.org/10.1108/RPJ-02-2015-0022

    Article  Google Scholar 

  20. Gerdes, N., Fokken, L.G., Linke, S., et al., Selective laser melting for processing of regolith in support of a lunar base, J. Laser Appl., 2018, vol. 30, p. 032018. https://doi.org/10.2351/1.5018576

    Article  ADS  Google Scholar 

  21. Farries, K.W., Visintin, P., Smith, S.T., et al., Construction of lunar masonry habitats using laser-processed bricks, 71st International Astronautical congress (IAC)—The CyberSpace Edition, 2020, IAC-20-E5.1.1x58693.

  22. Balla, V.K., Roberson, L.B., O’Connor, G.W., et al., First demonstration on direct laser fabrication of lunar regolith parts, Rapid Prototyp. J., vol. 18, no. 6, pp. 451–457. https://doi.org/10.1108/13552541211271992

  23. Goulas, A., Binner, J.G.P., Harris, R.A., et al., Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing, Appl. Mater. Today, 2017, vol. 6, pp. 54–61. https://doi.org/10.1016/j.apmt.2016.11.004

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the Institute of Engines and Power Plants of Samara University and the Center for Collective Use of the ATOS of Ustinov VOENMEKh University for technical assistance in the experiment on the fusion of lunar regolith simulators on laser facilities, as well as to the staff of the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences for advice on the properties of the regolith.

Funding

This study was supported by the Russian Science Foundation, grant no. 22-22-00840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomilina, T.M., Kim, A.A., Lisov, D.I. et al. A Lunar Printer Experiment on Laser Fusion of the Lunar Regolith in the Luna-Grunt Space Project. Cosmic Res 61, 314–323 (2023). https://doi.org/10.1134/S0010952523700302

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952523700302

Navigation