Skip to main content
Log in

CME Radio Precursors Recorded in February–March 2023

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Based on an analysis of data for February–March 2023, the report considers the results of studies of the relationship between the occurrence of sporadic microwave radiation preceding the phenomena of coronal mass ejections and these phenomena. The aim is to develop methods for short-term prediction of coronal mass ejections from radio data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Gopalswamy, N., The Sun and space weather, Atmosphere, 2022, vol. 13, no. 11, p. 1781. https://doi.org/10.3390/atmos13111781

  2. Pulkkinen, A., Bernabeu, E., Thomson, A., et al., Geomagnetically induced currents: Science, engineering, and applications readiness, Space Weather, 2017, vol. 15, no. 7, pp. 828–856. https://doi.org/10.1002/2016SW001501

    Article  ADS  Google Scholar 

  3. Kutiev, I., Tsagouri, I., Perrone, L., et al., Solar activity impact on the Earth’s upper atmosphere, J. Space Weather Space Clim., 2013, vol. 3, no. A06. https://doi.org/10.1051/swsc/2013028

  4. Tsagouri, I., Galkin, I., and Asikainen, T., Long-term changes in space weather effects on the Earth’s ionosphere, Adv. Space Res., 2017, vol. 59, no. 1, pp. 351–365. https://doi.org/10.1016/j.asr.2016.10.004

    Article  ADS  Google Scholar 

  5. Breus, T.K., Binhi, V.N., and Petrukovich, A.A., Magnetic factor in solar-terrestrial relations and its impact on the human body: Physical problems and prospects for research, Usp. Phys., 2016, vol. 59, pp. 502–510. https://doi.org/10.3367/UFNe.2015.12.037693

    Article  Google Scholar 

  6. Vourlidas, A., Improving the medium-term forecasting of space weather: A big picture review from a solar observer’s perspective, Front. Astron. Space Sci., 2021, vol. 8, p. 651527. https://doi.org/10.3389/fspas.2021.651527

    Article  Google Scholar 

  7. Falconer, D.A., Moore, R.I., and Gary, G.A., Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity, Astrophys. J., 2008, vol. 689, pp. 1433–1442. https://doi.org/10.1086/591045

    Article  ADS  Google Scholar 

  8. Qahwaji, R., Colak, T., Al-Omari, M., et al., Automated prediction of CMEs using machine learning of CME–flare associations, Sol. Phys., 2008, vol. 248, no. 2, pp. 471–483. https://doi.org/10.1007/s11207-007-9108-1

    Article  ADS  Google Scholar 

  9. Al-Omari, M., Qahwaji, R., Colak, T., et al., Machine leaning-based investigation of the associations between CMEs and filaments, Sol. Phys., 2010, vol. 262, no. 2, pp. 511–539. https://doi.org/10.1007/s11207-010-9516-5

    Article  ADS  Google Scholar 

  10. Baker, D., van Driel-Gesztelyi, L., and Green, L.M., Forecasting a CME by spectroscopic precursor?, Sol. Phys., 2012, vol. 276, pp. 219–239. https://doi.org/10.1007/s11207-011-9893-4

    Article  ADS  Google Scholar 

  11. Chen, P.F., Coronal mass ejections: Models and their observational basis, Liv. Rev. Sol. Phys., 2011, vol. 8, no. 1. https://doi.org/10.12942/lrsp-2011-1

  12. Schmieder, B. and Aulanier, G., What are the physical mechanisms of eruptions and CMEs?, Adv. Space Res., 2011, vol. 49, no. 11, pp. 1598–1606. https://doi.org/10.1016/j.asr.2011.10.023

    Article  ADS  Google Scholar 

  13. Green, L.M., Török, T., Vršnak, B., et al., The origin, early evolution and predictability of solar eruptions, Space Sci. Rev., 2018, vol. 214, no. 1, p. 46. https://doi.org/10.1007/s11214-017-0462-5

    Article  ADS  Google Scholar 

  14. Casini, R., White, S.M., and Judge, P.G., Magnetic diagnostics of the solar corona: Synthesizing optical and radio techniques, Space Sci. Rev., 2017, vol. 210, pp. 145–181. https://doi.org/10.1007/s11214-017-0400-6

    Article  ADS  Google Scholar 

  15. Zheleznyakov, V.V., Radioizluchenie Solntsa i planet (Radio Emission from the Sun and Planets), Moscow: Nauka, 1964.

  16. Zlotnik, E.Ya., Theory of the slowly changing component of solar radio emission. I, Sov. Astron., 1968, vol. 12, no. 2, p. 245.

    ADS  Google Scholar 

  17. Zlotnik, E.Ya., The theory of the slowly changing component of solar radio emission. II, Sov. Astron., 1968, vol. 12, no. 3, p. 464.

    ADS  Google Scholar 

  18. Kuroda, N., Fleishman, G.D., Gary, D.E., et al., Evolution of flare-accelerated electrons quantified by spatially resolved analysis, Front. Astron. Space Sci., 2020, vol. 7, p. 22. https://doi.org/10.3389/fspas.2020.00022

    Article  ADS  Google Scholar 

  19. Nindos, A., Incoherent solar radio emission, Front. Astron. Space Sci., 2020, vol. 7, p. 57. https://doi.org/10.3389/fspas.2020.00057

    Article  ADS  Google Scholar 

  20. Vourlidas, A., Radio observations of coronal mass ejection, in Solar and Space Weather Radiophysics: Current Status and Future Developments, Gary, D.E. and Keller, C.U., Eds., Dordrecht: Kluwer Academic Publishers, 2004, vol. 314, pp. 223–242.https://doi.org/10.1007/1-4020-2814-8_11

    Book  Google Scholar 

  21. Vourlidas, A., Carley, E.P., and Vilmer, N., Radio observations of coronal mass ejections: Space weather aspects, Front. Astron. Space Sci., 2020, vol. 7, p. 43. https://doi.org/10.3389/fspas.2020.00043

    Article  ADS  Google Scholar 

  22. Carley, E.P., Vilmer, N., and Vourlidas, A., Radio observations of coronal mass ejection initiation and development in the low solar corona, Front. Astron. Space Sci., 2020, vol. 7, p. 551558. https://doi.org/10.3389/fspas.2020.551558

    Article  Google Scholar 

  23. Pohjolainen, S., Vilmer, N., Khan, J.I., et al., Early signatures of large-scale field line opening. Multi-wavelength analysis of features connected with a “halo” CME event, Astron. Astrophys., 2005, vol. 434, pp. 329–341. https://doi.org/10.1051/0004-6361:20041378

    Article  ADS  Google Scholar 

  24. Aurass, H., Holman, G., Braune, S., et al., Radio evidence for breakout reconnection in solar eruptive events, Astron. Astrophys., 2013, vol. 555, no. A40. https://doi.org/10.1051/0004-6361/201321111

  25. Aurass, H., Vourlidas, A., Andrews, M.D., et al., Nonthermal radio signatures of coronal disturbances with and without coronal mass ejections, Astrophys. J., 1999, vol. 511, pp. 451–465. https://doi.org/10.1086/306653

    Article  ADS  Google Scholar 

  26. Pick, M., Malherbe, J.-M., Kerdraon, A., et al., On the disk Hα and radio observations of the 2003 October 28 flare and coronal mass ejection event, Astrophys. J. Lett., 2005, vol. 631, p. L97. https://doi.org/10.1086/497137

    Article  ADS  Google Scholar 

  27. Kobrin, M., Semenova, S.V., Pakhomov, V.V., et al., Results of studies of the effect of increasing long-period pulsations of centimeter radio emission from the Sun before powerful flares, ATs, 1981, no. 1201, pp. 1–3.

  28. Avdyushin, S.I., Bogomolov, A.F., Borisova, E.A., et al., On the connection between solar flare activity and the characteristics of radio emission from local sources on the Sun, Dokl. Akad. Nauk SSSR, 1985, vol. 283, no. 1, pp. 67–70.

    ADS  Google Scholar 

  29. Liu, Y. and Zheng, L., Solar microwave radiation flux and the short-term prediction of proton events, in Proc. Solar-Terrestrial Prediction-V (STPW’96), Japan, January 23–27, 1996, Tokyo: RCW, 1997, pp. 196–199.

  30. Li, X.-C. and Kang, L.-Sh., Evidence for a strong correlation of solar proton events with solar radio bursts, Chin. J. Astron. Astrophys., 2005, vol. 5, no. 1, pp. 110–116.

    Article  ADS  Google Scholar 

  31. Snegirev, S.D., Fridman, V.M., and Sheiner, O.A., RF Patent 2009136134/28, Byull. Izobret., 2011, no. 15.

  32. Durasova, M.S., Podstrigach, T.S., Fridman, V.M., et al., A study of preflare situations using spectral data on fluxes of solar radio emission in the period from 1970 to 1994, Radiophys. Quantum Electron., 1996, vol. 39, pp. 950–956.

    Article  ADS  Google Scholar 

  33. Wang, H., Liu, Ch., Ahn, K., et al., High-resolution observations of flare precursors in the low solar atmosphere, Nat. Astron., 2017, vol. 1, p. 0085. https://doi.org/10.1038/s41550-017-0085

  34. Sheiner, O.A. and Durasova, M.S., Solar microwave precursors and coronal mass ejection: Possible connection, Radiophys. Quantum Electron., 1994, vol. 37, no. 7, pp. 575–578. https://doi.org/10.1007/BF01046806

    Article  ADS  Google Scholar 

  35. Sheiner, O.A. and Fridman, V.M., Solar microwave emission phenomena observed during the formation and initial propagation of coronal mass ejections, Radiophys. Quantum Electron., 2010, vol. 53, pp. 281–296.

    Article  ADS  Google Scholar 

  36. Sheiner, O.A. and Fridman, V.M., The features of microwave solar radiation observed in the stage of formation and initial propagation of geoeffective coronal mass ejections, Radiophys. Quantum Electron., 2012, vol. 54, pp. 655–666.

    Article  ADS  Google Scholar 

  37. Fridman, V.M. and Sheiner, O.A., RF Patent 2630535, 2017.

  38. Vapnik, V.N., Vosstanovlenie zavisimostei po empiricheskim dannym (Recovering Dependencies Based on Empirical Data), Moscow: Nauka, 1979.

  39. Solar-Geophysical Data (explanation of data reports). 1981. Suppl. Iss. 438. ftp//ftp.ngdc.noaa.gov/stp/solardata/solarradio/bursts/radio.txt.

  40. Durasova, M.S., Tikhomirov, Yu.V., and Fridman, V.M., On the frequency distribution of microwave radio bursts during periods associated with the existence of coronal mass ejections, in Aktual’nye problemy fiziki solnechnoi i zvezdnoi aktivnosti. Konf. stran SNG i Pribaltiki (Current Problems in the Physics of Solar and Stellar Activity. Conf. CIS and Baltic Countries), Nizhny Novgorod, June 2–7, 2003, vol. 1, pp. 136–139.

  41. Yan, J., Wu, J., Wu, L., et al., A super radio camera with a one-kilometre lens, Nat. Astron., 2023, vol. 7, p. 750. https://doi.org/10.1038/s41550-023-01932-y

    Article  ADS  Google Scholar 

  42. Altyntsev, A., Siberian Radioheliograph: Multi-wave monitoring in the range of 3–12 GHz in February–March 2023, in Tezisy dokl. Konf. “Problemy kosmofiziki” imeni M.I. Panasyuka (Proc. Conf. “Problems of Cosmophysics” Named after M.I. Panasyuk), 2023.

Download references

Funding

The study was carried out under project FSWR-2023-0038 within a basic part of a state order of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Sheiner.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheiner, O.A., Fridman, V.M. CME Radio Precursors Recorded in February–March 2023. Cosmic Res 62, 210–219 (2024). https://doi.org/10.1134/S0010952523600348

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952523600348

Navigation