Skip to main content

Study of Cosmic Ray Intensity (CRI) along with Solar Wind Parameters and Geomagnetic Indices from Different Stations

Abstract

In this study, the variations of cosmic ray intensity (CRI) and their correlations with solar wind parameters and geomagnetic indices from different stations are investigated. In this work, CRI data obtained from the neutron monitor database over the MWSN, DOMC, and HRMS stations was used. The findings of this study indicate that the CRI over the MWSN station was greater than over the DOMC and HRMS stations. However, the CRI over DOMC is much lower than for MWSN and HRMS stations. Interestingly, the CRI values at all stations decreased during a strong geomagnetic storm period in May 2017 compared to January 2020. Also, the continuous wavelet transform (CWT) result showed that a higher power spectrum in CRI was clearly seen in May 2017 than in January 2020. This is because cosmic ray intensity is more highly modulated by the strength of geomagnetic storms (strong storms) than weak storms and the southward shifts of the interplanetary magnetic field (IMF Bz) component. Noticeably, CRI is found to decrease in a pattern similar to Earth’s magnetic field, and the Dst-index indicates that disturbances of the ring current cause the value of CRI to decrease upon reaching Earth. The correlation analysis of CRI over DOMC, MWSN, and HRMS stations along with the solar wind parameters and geomagnetic indices for both strong and moderate events found that the coefficients of interplanetary electric field (IEF Ey), f10.7-index, Kp, and Ap-indices peak with a very high value of 1 for a zero lag, which shows a good positive correlation between the parameters. However, the coefficients of the IMF Bz, solar wind speed, and Dst-index peak with very high values of 0.2 and 0.5 for a zero lag, indicating weaker and stronger correlations between the parameters that were taken into account for the study.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Hillas, A., Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?, J. Phys. G: Nucl. Part. Phys., 2005, vol. 31, no. 5, p. R95.

    Article  ADS  Google Scholar 

  2. Firoz, K., Kumar, D., and Cho, K.-S., On the relationship of cosmic ray intensity with solar, interplanetary, and geophysical parameters, Astrophys. Space Sci., 2010, vol. 325, no. 2, pp. 185–193.

    Article  ADS  Google Scholar 

  3. Horowitz, C.J., Arcones, A., Cote, B., et al., R-process nucleosynthesis: Connecting rare-isotope beam facilities with the cosmos, J. Phys. G: Nucl. Particle Phys., 2019, vol. 46, no. 8, p. 083001. https://doi.org/10.1088/1361-6471/AB0849

    Article  ADS  Google Scholar 

  4. Diehl, R., Korn, A.J., Leibundgut, B., et al., Cosmic nucleosynthesis: A multi-messenger challenge, Prog. Part. Nucl. Phys., 2022, p. 103983. https://doi.org/10.1016/j.ppnp.2022.103983

  5. Mironova, I.A., Aplin, K.L., Arnold, F., et al., Energetic particle influence on the Earth’s atmosphere, Space Sci. Rev., 2015, vol. 194, no. 1, pp. 1–96.

    Article  ADS  Google Scholar 

  6. Zreda, M., Shuttleworth, W., Zeng, X., et al., Cosmos: The cosmic-ray soil moisture observing system, Hydrol. Earth Syst. Sci., 2012, vol. 16, no. 11, pp. 4079–4099.

    Article  ADS  Google Scholar 

  7. Kudela, K., Storini, M., Hofer, M.Y., et al., Cosmic rays in relation to space weather, Space Sciences Series of ISSI Book Series. Cosmic Rays and Earth, 2000, vol. 10, pp. 153–174.

    Article  ADS  Google Scholar 

  8. Aartsen, M., Abraham, K., Ackermann, M., et al., Anisotropy in cosmic-ray arrival directions in the southern hemisphere based on six years of data from the icecube detector, Astrophys. J., 2016, vol. 826, no. 2, p. 220.

    Article  ADS  Google Scholar 

  9. Buchvarova, M., Galactic cosmic rays above the Earth’s atmosphere, J. Phys.: Conf. Ser., 2022, vol. 2255, p. 012003. https://doi.org/10.1088/1742-6596/2255/1/012003

    Article  Google Scholar 

  10. Pogorelov, N.V., Stone, E.C., Florinski, V., et al., Termination shock asymmetries as seen by the voyager spacecraft: The role of the interstellar magnetic field and neutral hydrogen, Astrophys. J., 2007, vol. 668, no. 1, p. 611.

    Article  ADS  Google Scholar 

  11. Hajra, R., Variation of the interplanetary shocks in the inner heliosphere, Astrophys. J., 2021, vol. 917, p. 91. https://doi.org/10.3847/1538-4357/ac0897

    Article  ADS  Google Scholar 

  12. Dhurve, A., Saxena, A.K., and Ghuratia, R., Variations of cosmic ray intensity in relation to sunspot number and solar wind parameters over the period 1996–2019, Int. J. Sci. Res. Sci. Technol., 2022, vol. 9, no. 4, pp. 418–423. https://doi.org/10.32628/IJSRST229466

    Article  Google Scholar 

  13. Wang, C.-P., Lyons, L.R., Nagai, T., et al., Sources, transport, and distributions of plasma sheet ions and electrons and dependences on interplanetary parameters under northward interplanetary magnetic field, J. Geophys. Res.: Space Phys., 2007, vol. 112, p. A10.

    Article  Google Scholar 

  14. Singh, Y. Gautam, S., et al., Temporal variations of short-and midterm periodicities in solar wind parameters and cosmic ray intensity, J. Atmos. Sol.-Terr. Phys., 2012, vol. 89, pp. 48–53.

    Article  ADS  Google Scholar 

  15. Aslam, O., et al., Solar modulation of cosmic rays during the declining and minimum phases of solar cycle 23: Comparison with past three solar cycles, Sol. Phys., 2012, vol. 279, no. 1, pp. 269–288. https://doi.org/10.1007/s11207-012-9970-3

    Article  ADS  Google Scholar 

  16. Chowdhury, P., Kudela, K., and Dwivedi, B., Heliospheric modulation of galactic cosmic rays during solar cycle 23, Sol. Phys., 2013, vol. 286, no. 2, pp. 577–591.

    Article  ADS  Google Scholar 

  17. Guo, X. and Florinski, V., Corotating interaction regions and the 27 day variation of galactic cosmic rays intensity at 1 AU during the cycle 23/24 solar minimum, J. Geophys. Res.: Space Phys., 2014, vol. 119, no. 4, pp. 2411–2429.

    Article  ADS  Google Scholar 

  18. Mavromichalaki, H., Papailiou, M.-C., Gerontidou, M., et al., Human physiological parameters related to solar and geomagnetic disturbances: data from different geographic regions, Atmosphere, 2021, vol. 12, no. 12, p. 1613. https://doi.org/10.3390/atmos12121613

    Article  ADS  Google Scholar 

  19. Papailiou, M., Ioannidou, S., Tezari, A., et al., Space weather phenomena on heart rate: A study in the Greek region, Int. J. Biometeorol., 2022, vol. 67, no. 6. https://doi.org/10.1007/s00484-022-02382-3

  20. Mathpal, C., Prasad, L., Pokharia, M., et al., Study of cosmic ray intensity in relation to the interplanetary magnetic field and geomagnetic storms for solar cycle 24, Astrophys. Space Sci., 2018, vol. 363, no. 8. https://doi.org/10.1007/s10509-018-3390-2

  21. Kronberg, E.A., Ashour-Abdalla, M., Dandouras, I., et al., Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models, Space Sci. Rev., 2014, vol. 184, no. 1, pp. 173–235.

    Article  ADS  Google Scholar 

  22. Oloketuyi, J., Liu, Y., Amanambu, A.C., and Zhao, M., Responses and periodic variations of cosmic ray intensity and solar wind speed to sunspot numbers, Adv. Astron., 2020, vol. A2, pp. 1–10.

    Article  Google Scholar 

  23. Okike, O. and Alhassan, J., Amplitude of the observational Forbush decreases in the presence of cosmic ray diurnal anisotropy during high solar activity in 1972, Sol. Phys., 2021, vol. 296, no. 7, pp. 1–27. https://doi.org/10.1007/s11207-021-01855-9

    Article  Google Scholar 

  24. Mishra, A., Gupta, M., and Mishra, V., Cosmic ray intensity variations in relation with solar flare index and sunspot numbers, Sol. Phys., 2006, vol. 239, no. 1, pp. 475–491.

    Article  ADS  Google Scholar 

  25. Kharayat, H., Prasad, L., Mathpal, R., et al., Study of cosmic ray intensity in relation to the interplanetary magnetic field and geomagnetic storms for solar cycle 23, Sol. Phys., 2016, vol. 291, no. 2, pp. 603–611.

    Article  ADS  Google Scholar 

  26. Bieber, J., Clem, J., Evenson, P., et al., Giant ground level enhancement of relativistic solar protons on 2005 January 20. I. Spaceship Earth observations, Astrophys. J., 2013, vol. 771, no. 2, p. 92.

    Article  ADS  Google Scholar 

  27. Wang, Y., Guo, J., Li, G., et al., Variation in cosmic-ray intensity lags sunspot number: implications of late opening of solar magnetic field, Astrophys. J., 2022, vol. 928, no. 2, p. 157. https://doi.org/10.1088/0004-637X/771/2/9

    Article  ADS  Google Scholar 

  28. Tsurutani, B.T., Gonzalez, W.D., Tang, F., et al., Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), J. Geophys. Res.: Space Phys., 1988, vol. 93, no. A8, pp. 8519–8531.

    Article  ADS  Google Scholar 

  29. Mishra, R.K., Silwal, A., Baral, R., et al., Wavelet analysis of Forbush decreases at high-latitude stations during geomagnetic disturbances, Sol. Phys., 2022, vol. 297, no. 2, p. 26. https://doi.org/10.1007/s11207-022-01948-z

    Article  ADS  Google Scholar 

  30. Desiati, P. and Lazarian, A., Anisotropy of TeV cosmic rays and outer heliospheric boundaries, Astrophys. J., 2012, vol. 762, no. 1, p. 44.

    Article  ADS  Google Scholar 

  31. Baral, R., Adhikari, B., Calabia, A., et al., Spectral features of Forbush decreases during geomagnetic storms, J. Atmos. Sol.-Terr. Phys., 2022, vol. 242, p. 105981. https://doi.org/10.1016/j.jastp.2022.105981

    Article  Google Scholar 

  32. Lin, J.-W., Geomagnetic storm related to disturbance storm time indices, Eur. J. Environ. Earth Sci., 2021, vol. 2, no. 6. https://doi.org/10.24018/ejgeo.2021.2.6.199

  33. Burlaga, L. and Ness, N., Magnetic field strength distributions and spectra in the heliosphere and their significance for cosmic ray modulation: Voyager 1, 1980–1994, J. Geophys. Res.: Space Phys., 1998, vol. 103, no. A12, pp. 29719–29732.

    Article  ADS  Google Scholar 

  34. Wibberenz, G., Richardson, I., and Cane, H., A simple concept for modeling cosmic ray modulation in the inner heliosphere during solar cycles 20–23, J. Geophys. Res.: Space Phys., 2002, vol. 107, no. A11, p. SSH–5.

    Article  Google Scholar 

  35. Dumbović, M., Vršnak, B., Čalogović, J., et al., Cosmic ray modulation by different types of solar wind disturbances, Astron. Astrophys., 2012, vol. 538, p. A28. https://doi.org/10.1051/0004-6361/201117710

    Article  ADS  Google Scholar 

  36. Bhaskar, A., Vichare, G., Arunbabu, K., et al., Role of solar wind speed and interplanetary magnetic field during two-step Forbush decreases caused by interplanetary coronal mass ejections, Astrophys. Space Sci., 2016, vol. 361, pp. 1–13.

    Article  Google Scholar 

  37. Esposito, G., Study of cosmic ray fluxes in Low Earth Orbit observed with the AMS experiment, PhD, Perugia Univ., 2002.

    Google Scholar 

  38. Roussos, E., Allanson, O., Andre, N., et al., The in-situ exploration of Jupiter’s radiation belts (A white paper submitted in response to ESA’s voyage 2050 call), 2019. arXiv preprint arXiv:1908.02339.

  39. Roussos, E., Allanson, O., Andre, N., et al., The in-situ exploration of Jupiter’s radiation belts, Exp. Astron., 2021, vol. 54, no. A1, pp. 745–789. https://doi.org/10.1007/s10686-021-09801-0

    Article  ADS  Google Scholar 

  40. Chowdhury, P., Kudela, K., and Moon, Y.-J., A study of heliospheric modulation and periodicities of galactic cosmic rays during cycle 24, Sol. Phys., 2016, vol. 291, no. 2, pp. 581–602.

    Article  ADS  Google Scholar 

  41. Richardson, I. and Cane, H., Galactic cosmic ray intensity response to interplanetary coronal mass ejections/magnetic clouds in 1995–2009, Sol. Phys., 2011, vol. 270, pp. 609–627.

    Article  ADS  Google Scholar 

  42. Silwal, A., Gautam, S., Poudel, P., et al., Global positioning system observations of ionospheric total electron content variations during the 15th January 2010 and 21st June 2020 solar eclipse, Radio Sci., 2021, vol. 56, no. 5. https://doi.org/10.1029/2020RS007215

  43. Mavromichalaki, H., Paouris, E., and Karalidi, T., Cosmic-ray modulation: an empirical relation with solar and heliospheric parameters, Sol. Phys., 2007, vol. 245, no. 2, pp. 369–390.

    Article  ADS  Google Scholar 

  44. Usoskin, I., Schussler, M., Solanki, S., and Mursula, K., Solar activity, cosmic rays, and Earth’s temperature: A millennium-scale comparison, J. Geophys. Res.: Space Phys., 2005, vol. 110, p. A10.

  45. Chowdhury, P. and Kudela, K., Quasi-periodicities in cosmic rays and time lag with the solar activity at a middle latitude neutron monitor: 1982–2017, Astrophys. Space Sci., 2018, vol. 363, no. 12. https://doi.org/10.1007/s10509-018-3467-y

Download references

ACKNOWLEDGMENTS

The authors wish to extend their appreciation to the following organizations for easy access to their data: (https://www.nmdb.eu/), the OMNIWeb data sets (https://omniweb.gsfc.nasa.gov/), and magnetometer data from (https://www.intermagnet.org).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chali Idosa Uga or Binod Adhikari.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chali Idosa Uga, Binod Adhikari Study of Cosmic Ray Intensity (CRI) along with Solar Wind Parameters and Geomagnetic Indices from Different Stations. Cosmic Res 61, 364–379 (2023). https://doi.org/10.1134/S0010952523600026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952523600026

Keywords: