Skip to main content

Simulation of Intermediate Turbulence in Space Plasma

Abstract

To describe the processes of acceleration and transfer of charged particles in turbulent magnetospheric and solar plasmas, a two-dimensional model of a turbulent electromagnetic field with a controlled intermittency level is proposed. In the model, the electromagnetic field has two components: a turbulent electromagnetic field obtained in the form of a superposition of plane waves, and an electromagnetic field created by oscillating magnetoplasma structures—plasmoids. Within the framework of the model, the role of intermittency in the acceleration of charged particles is investigated. It is shown that, the larger the parameter characterizing the level of intermittency, the higher the energy values that the charged particles are able to reach. The use of the model for describing observations of high-energy particle fluxes in the Earth’s magnetosphere and in the solar wind is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Zelenyi, L.M., Malova, H.V., Artemyev, A.V., et al., Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration, Plasma Phys. Rep., 2011, vol. 37, no. 2, pp. 118–160.

    ADS  Article  Google Scholar 

  2. Parkhomenko, E.I., Malova, H.V., Grigorenko, E.E., et al., Acceleration of plasma in current sheet during substorm dipolarizations in the Earth’s magnetotail: Comparison of different mechanisms, Phys. Plasmas, 2019, vol. 26, no. 4, id. 042901. https://doi.org/10.1063/1.5082715

  3. Haaland, S., et al., Spectral characteristics of protons in the Earth’s plasmasheet: Statistical results from Cluster CIS and RAPID, Ann. Geophys., 2010, vol. 28, pp. 1483–1498.

    ADS  Article  Google Scholar 

  4. Grigorenko, E.E., Kronberg, E.A., Daly, P.W., et al., Origin of low proton-to-electron temperature ratio in the Earth’s plasma sheet, J. Geophys. Res. Space Phys., 2016, vol. 121, pp. 9985–10004. https://doi.org/10.1002/2016JA022874

    ADS  Article  Google Scholar 

  5. Khabarova, O., Zank, G.P., Li, G., et al., Small-scale magnetic islands in the solar wind and their role in particle acceleration. I. Dynamics of magnetic islands near the heliospheric current sheet, Astrophys. J., 2015, vol. 808, no. 2, id. 181. https://doi.org/10.1088/0004-637X/808/2/181

  6. Vlahos, L., Pisokas, T., Isliker, H., et al., Particle acceleration and heating by turbulent reconnection, Astrophys. J., 2016, vol. 827, no. 1. https://doi.org/10.3847/2041-8205/827/1/L3

  7. Zilu, Z., et al., Intermittent heating in the magnetic cloud sheath regions, Astrophys. Lett., 2019, vol. 885, p. L13.

    ADS  Article  Google Scholar 

  8. Hoshino, M., Nishida, A., Yamamoto, T., et al., Turbulent magnetic field in the distant magnetotail: Bottom-up process of plasmoid formation, Geol. Soc. Am. Bull., 1994, vol. 21, pp. 2935–2938.

    Google Scholar 

  9. Petrukovich, A.A., Low frequency magnetic fluctuations in the Earth’s plasma sheet, Astrophys. Space Sci. Libr., 2005, vol. 321, pp. 145–179.

    ADS  Google Scholar 

  10. Zimbardo, G., et al., Magnetic turbulence in the geospace environment, Space Sci. Rev., 2010, vol. 156, pp. 89–134.

    ADS  Article  Google Scholar 

  11. Budaev, V.P., Savin S.P., and Zelenyi, L.M., Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features, Phys. Usp., 2011, vol. 54, pp. 875–918.

    ADS  Article  Google Scholar 

  12. Zelenyi, L.M., Rybalko, S.D., Artemyev, A.V., et al., Charged particle acceleration by intermittent electromagnetic turbulence, Geophys. Rev. Lett., 2011, vol. 38, id. 17110.

  13. Slavin, J.A., Acuna, M.H., Anderson, B.J., et al., MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere, Science, 2009, vol. 324, no. 5927, pp. 606–610. https://doi.org/10.1126/science.1172011

    ADS  Article  Google Scholar 

  14. Machida, S., Ieda, A., Mukai, T., et al., Statistical visualization of Earth’s magnetotail during substorms by means of multidimensional superposed epoch analysis with geotail data, J. Geophys. Res., 2000, vol. 105, no. A11, pp. 25291–25304. https://doi.org/10.1029/2000JA900064

    ADS  Article  Google Scholar 

  15. Pan, Q., Ashour-Abdalla, M., Walker, R.J., and El-Alaoui, M., Ion energization and transport associated with magnetic dipolarizations, Geophys. Rev. Lett., 2014, vol. 41, no. 16, pp. 5717–5726. https://doi.org/10.1002/2014GL061209

    ADS  Article  Google Scholar 

  16. Artemyev, A.V., Zelenyi, L.M., Malova, H.V., et al., Acceleration and transport of ions in turbulent current sheets: formation of non-maxwelian energy distribution, Nonlin. Processes Geophys., 2009, vol. 16, pp. 631–639.

    ADS  Article  Google Scholar 

  17. Chiaravalloti, F., Milovanov, A.V., and Zimbardo, G., Self-similar transport processes in a two-dimensional realization of multiscale magnetic field turbulence, Phys. Scr., 2006, vol. 122, pp. 79–88.

    Article  Google Scholar 

  18. Perri, S., Lepreti, F., Carbone, V., et al., Position and velocity space diffusion of test particles in stochastic electromagnetic fields, Europhys. Lett., 2007, vol. 78, id. 40003.

  19. Perri, S., Greco, A., and Zimbardo, G., Stochastic and direct acceleration mechanisms in the Earth’s magnetotail, Geophys. Rev. Lett., 2009, vol. 36, id. L04103.

  20. Zel’dovich Ya.B., Molchanov S.A., Ruzmaikin A.A., and Sokolov, D.D., Intermittency in random media, Sov. Phys. Usp., vol. 30, pp. 353–369.

  21. Frisch, U., Turbulence: The Legacy of A.N. Kolmogorov, Cambridge: Cambridge Press, 1995.

    Book  Google Scholar 

  22. Zhukova, E.I., Malova, H.V., Grigorenko, E.E., et al., Plasma acceleration on multiscale temporal variations of electric and magnetic fields during substorm dipolarization in the Earth’s magnetotail, Ann. Geophys., 2018, vol. 61, no. 3, pp. 1–10. https://doi.org/10.4401/ag-7582

    Article  Google Scholar 

  23. Zelenyi, L.M. and Milovanov, A.V., Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics, Phys. Usp., 2004, vol. 47, pp. 749–788. https://doi.org/10.1070/PU2004v047n08ABEH001705

    Article  Google Scholar 

  24. Malova, Kh.V., Popov, Yu.V., Khabarova, O.V., et al., Structure of current sheets with quasi-adiabatic dynamics of particles in the solar wind, Cosmic Res., 2018, vol. 56, no. 6, pp. 462–470.

    ADS  Article  Google Scholar 

  25. Maiewski, E.V., Malova, H.V., Kislov, R.A., et al., Formation of multiple current sheets in the heliospheric plasma sheet, Cosmic Res., 2020, vol. 58, no. 6, pp. 411–425. https://doi.org/10.1134/S0010952520060076

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Levashov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levashov, N.N., Popov, V.Y., Malova, H.V. et al. Simulation of Intermediate Turbulence in Space Plasma. Cosmic Res 60, 9–14 (2022). https://doi.org/10.1134/S0010952522010087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952522010087