Krymskii, G.F., Osnovnye problemy sovremennoi kosmofiziki. Metodologicheskie problemy razvitiya nauki v regione (Main Problems of Modern Cosmophysics. Methodological Problems of the Development of Science in the Region), Novosibirsk: Nauka, 1987.
Krymskii, G.F. and Transkii, I.A., Raspredelenie galakticheskikh kosmicheskikh luchei i dinamika strukturnykh obrazovanii v solnechnom vetre (Galactic Cosmic Ray Distribution and Dynamics of Structural Formations in the Solar Wind), Yakutsk: Yakutsk. Fil. Akad. Nauk SSSR, 1973.
Krymskii, G.F., Transkii, I.A., and Elshin, V.K., Piston shock waves in the interplanetary medium, Geomagn. Aeron., 1974, vol. 14, no. 2, pp. 196–200.
Google Scholar
Krymskii, G.F., Transkii, I.A., and Elshin, V.K., Piston shock waves in the interplanetary medium and Forbush effects, Geomagn. Aeron., 1974, vol. 14, no. 3, pp. 407–410.
Google Scholar
Krymskii, G.F., Transkii, I.A., Shafer, G.V., et al., Modeli udarnykh voln i nablyudaemye svoistva forbush-effektov (Shock Wave Models and Observed Properties of Forbush Effects), Yakutsk: Yakutsk. Fil. Akad. Nauk SSSR, 1975, pp. 58–68.
Krymskii, G.F., Elshin, V.K., Romashchenko, Yu.A., et al., Magnitnye probki v udarnykh volnakh i ikh rol’ v uskorenii chastits. Svyaz’ fizicheskikh protsessov v ionosfere i magnitosfere Zemli s parametrami solnechnogo vetra (Magnetic Corks in Shock Waves and Their Role in Particle Acceleration. Relationship of Physical Processes in the Earth’s Ionosphere and Magnetosphere with the Solar Wind Parameters), Yakutsk: Yakutsk. Fil. Akad. Nauk SSSR, 1977.
Kamoldinov, S.M., et al., The influence of magnetic “corks” upon the galactic cosmic ray distribution, Proc. 14th Int. Cosmic Ray Conf., 1975, vol. 3, pp. 838–843.
Aimanova, G.K., Demchenko, B.I., and Makarenko, N.G., Applied methods of topological dynamics. 2. Numerical analysis of chaos, Preprint Fesenkov Astrophys. Inst., Almaty, 1990, no. 90-03, p. 52.
Rabinovich, M.I., Nelineinaya dinamika i turbulentnost’. Nelineinye volny. Dinamika i evolyutsiya (Nonlinear Dynamics and Turbulence. Nonlinear Waves. Dynamics and Evolution), Moscow: Nauka, 1989.
Morishita, I., Nagashima, K., Sakakibara, S., et al., Long term changes of the rigidity spectrum of Forbush decrease, Proc. 21st Int. Cosmic Ray Conf., 1990, vol. 6, pp. 217–219.
Lindsay, G.M., Russel, C.T., Luhman, J.G., et al., On the sources of interplanetary shocks at 0.72 AU, J. Geophys. Res., 1994, vol. 99, no. A1, pp. 11–17.
ADS
Article
Google Scholar
Kozlov, V.I., Scale invariance of cosmic ray fluctuation dynamics at the geoeffective phases of the solar cycle, Geomagn. Aeron., 1999, vol. 39, no. 1, pp. 95–99.
Google Scholar
Kozlov, V.I., Estimation of the scaling properties of the dynamics of cosmic ray fluctuations in the solar activity cycle, Geomagn. Aeron., 1999, vol. 39, no. 1, pp. 100–104.
Google Scholar
Kozlov, V.I. and Kozlov, V.V., Aritmiya Solntsa. V kosmicheskikh luchakh (Arrhythmia of the Sun. In Cosmic Rays), Yakutsk: Izd. Inst. Merzlotoved., Inst. Kosmofiz. Issled. Aeron., Ross. Akad. Nauk, 2019.
Google Scholar
Dennis, B.R., Solar hard X-ray bursts, Sol. Phys., 1985, vol. 100, pp. 465–490.
ADS
Article
Google Scholar
Zelenyi, L.M. and Milovanov, A.V., Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics, Phys. Usp., 2004, vol. 47, pp. 749–788.
Article
Google Scholar
Bak, P., Tang, C., and Wiesenfeld, K., Self-organized criticality, Phys. Rev., 1988, vol. 38, no. 1, pp. 364–374.
ADS
MathSciNet
Article
Google Scholar
Bak, P., How Nature Works. The Science of Self-Organized Criticality, New York: Springer-Verlag, 1996.
MATH
Google Scholar
Podlazov, A.V. and Osokin, A.R., Self-organized criticality model of solar plasma eruption processes, Astrophys. Space Sci., vol. 282, no. 1, pp. 221–226.
Aivazyan, S.A., Enyukov, I.S., and Meshalkin, I.D., Prikladnaya statistika. Osnovy modelirovaniya i pervichnaya obrabotka dannykh (Applied Statistics. Modeling Basics and Data Preprocessing), Moscow: Finansy i statistika, 1983.
Kozlov, V.I. and Kozlov, V.V., Galactic cosmic ray fluctuation parameter as an indicator of the degree of magnetic field inhomogeneity, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 2, pp. 187–197.
Yermolaev, Yu.I., Zelenyi, L.M., Zastenker, G.N., et al., A year later: Solar, heliospheric, and magnetospheric disturbances in November 2004, Geomagn. Aeron. (Engl. Transl.), 2005, vol. 45, no. 6, pp. 723–763.
Scolini, C., Chane, E., Temmer, M., Kilpua, E.K.J., et al., CME–CME interactions as sources of CME geoeffectiveness: The formation of the complex ejecta and intense geomagnetic storm in 2017 early September, Astrophys. J. Suppl. Ser., 2020, vol. 247, no. 1, pp. 21–27.
ADS
Article
Google Scholar
Lumme, E., Kilpua, E., Palmerio, E., et al., Multipoint observations of the June 2012 interacting interplanetary flux ropes, Astron. Space Sci., 2019, vol. 6, art. no. 50. https://doi.org/10.3389/fspas.2019.00050
Article
Google Scholar
Uchaikin, V.V., Stokhasticheskie modeli v kineticheskoi teorii kosmicheskikh luchei (Stochastic Models in the Kinetic Theory of Cosmic Rays), Ulyanovsk: Ulyanovsk. Gos. Univ., 2011.
Crownover, R.M., Introduction to Fractals and Chaos, Burlington, MA: Jones & Bartlett, 1995.
Google Scholar
Veselovsky, I.S., Panasyuk, M.I., Avdyushin, S.I., et al., Solar and heliospheric phenomena in October–November 2003: Causes and effects, Cosmic Res., 2004, vol. 42, no. 5, pp. 435–488.
ADS
Article
Google Scholar
Obridko, V.N. and Shelting, B.D., Global complexes of activity, Astron. Reps., 2013, vol. 57, no. 10, pp. 848–858.
Google Scholar