Skip to main content

Forecasting Extreme Space-Weather Events on the Basis of Cosmic-Ray Fluctuations


In extreme events of space weather, very large fluxes of “storm” particles are formed preceding the arrival of a shock wave into the Earth’s orbit. They are the ones that pose the greatest danger to life-support systems in the upper atmosphere, in space, and on the Earth. The results have been checked of the prediction of “storm” particles accelerated by shock waves from variations in high-energy cosmic rays by measurements on the ACE spacecraft (United States). The forecast reliability is assessed at P ≥ 80%.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Appendix 1.
Fig. 4.
Appendix 4.
Appendix 3.
Appendix 2.


  1. Krymskii, G.F., Osnovnye problemy sovremennoi kosmofiziki. Metodologicheskie problemy razvitiya nauki v regione (Main Problems of Modern Cosmophysics. Methodological Problems of the Development of Science in the Region), Novosibirsk: Nauka, 1987.

  2. Krymskii, G.F. and Transkii, I.A., Raspredelenie galakticheskikh kosmicheskikh luchei i dinamika strukturnykh obrazovanii v solnechnom vetre (Galactic Cosmic Ray Distribution and Dynamics of Structural Formations in the Solar Wind), Yakutsk: Yakutsk. Fil. Akad. Nauk SSSR, 1973.

  3. Krymskii, G.F., Transkii, I.A., and Elshin, V.K., Piston shock waves in the interplanetary medium, Geomagn. Aeron., 1974, vol. 14, no. 2, pp. 196–200.

    Google Scholar 

  4. Krymskii, G.F., Transkii, I.A., and Elshin, V.K., Piston shock waves in the interplanetary medium and Forbush effects, Geomagn. Aeron., 1974, vol. 14, no. 3, pp. 407–410.

    Google Scholar 

  5. Krymskii, G.F., Transkii, I.A., Shafer, G.V., et al., Modeli udarnykh voln i nablyudaemye svoistva forbush-effektov (Shock Wave Models and Observed Properties of Forbush Effects), Yakutsk: Yakutsk. Fil. Akad. Nauk SSSR, 1975, pp. 58–68.

  6. Krymskii, G.F., Elshin, V.K., Romashchenko, Yu.A., et al., Magnitnye probki v udarnykh volnakh i ikh rol’ v uskorenii chastits. Svyaz’ fizicheskikh protsessov v ionosfere i magnitosfere Zemli s parametrami solnechnogo vetra (Magnetic Corks in Shock Waves and Their Role in Particle Acceleration. Relationship of Physical Processes in the Earth’s Ionosphere and Magnetosphere with the Solar Wind Parameters), Yakutsk: Yakutsk. Fil. Akad. Nauk SSSR, 1977.

  7. Kamoldinov, S.M., et al., The influence of magnetic “corks” upon the galactic cosmic ray distribution, Proc. 14th Int. Cosmic Ray Conf., 1975, vol. 3, pp. 838–843.

  8. Aimanova, G.K., Demchenko, B.I., and Makarenko, N.G., Applied methods of topological dynamics. 2. Numerical analysis of chaos, Preprint Fesenkov Astrophys. Inst., Almaty, 1990, no. 90-03, p. 52.

  9. Rabinovich, M.I., Nelineinaya dinamika i turbulentnost’. Nelineinye volny. Dinamika i evolyutsiya (Nonlinear Dynamics and Turbulence. Nonlinear Waves. Dynamics and Evolution), Moscow: Nauka, 1989.

  10. Morishita, I., Nagashima, K., Sakakibara, S., et al., Long term changes of the rigidity spectrum of Forbush decrease, Proc. 21st Int. Cosmic Ray Conf., 1990, vol. 6, pp. 217–219.

  11. Lindsay, G.M., Russel, C.T., Luhman, J.G., et al., On the sources of interplanetary shocks at 0.72 AU, J. Geophys. Res., 1994, vol. 99, no. A1, pp. 11–17.

    ADS  Article  Google Scholar 

  12. Kozlov, V.I., Scale invariance of cosmic ray fluctuation dynamics at the geoeffective phases of the solar cycle, Geomagn. Aeron., 1999, vol. 39, no. 1, pp. 95–99.

    Google Scholar 

  13. Kozlov, V.I., Estimation of the scaling properties of the dynamics of cosmic ray fluctuations in the solar activity cycle, Geomagn. Aeron., 1999, vol. 39, no. 1, pp. 100–104.

    Google Scholar 

  14. Kozlov, V.I. and Kozlov, V.V., Aritmiya Solntsa. V kosmicheskikh luchakh (Arrhythmia of the Sun. In Cosmic Rays), Yakutsk: Izd. Inst. Merzlotoved., Inst. Kosmofiz. Issled. Aeron., Ross. Akad. Nauk, 2019.

    Google Scholar 

  15. Dennis, B.R., Solar hard X-ray bursts, Sol. Phys., 1985, vol. 100, pp. 465–490.

    ADS  Article  Google Scholar 

  16. Zelenyi, L.M. and Milovanov, A.V., Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics, Phys. Usp., 2004, vol. 47, pp. 749–788.

    Article  Google Scholar 

  17. Bak, P., Tang, C., and Wiesenfeld, K., Self-organized criticality, Phys. Rev., 1988, vol. 38, no. 1, pp. 364–374.

    ADS  MathSciNet  Article  Google Scholar 

  18. Bak, P., How Nature Works. The Science of Self-Organized Criticality, New York: Springer-Verlag, 1996.

    MATH  Google Scholar 

  19. Podlazov, A.V. and Osokin, A.R., Self-organized criticality model of solar plasma eruption processes, Astrophys. Space Sci., vol. 282, no. 1, pp. 221–226.

  20. Aivazyan, S.A., Enyukov, I.S., and Meshalkin, I.D., Prikladnaya statistika. Osnovy modelirovaniya i pervichnaya obrabotka dannykh (Applied Statistics. Modeling Basics and Data Preprocessing), Moscow: Finansy i statistika, 1983.

  21. Kozlov, V.I. and Kozlov, V.V., Galactic cosmic ray fluctuation parameter as an indicator of the degree of magnetic field inhomogeneity, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 2, pp. 187–197.

  22. Yermolaev, Yu.I., Zelenyi, L.M., Zastenker, G.N., et al., A year later: Solar, heliospheric, and magnetospheric disturbances in November 2004, Geomagn. Aeron. (Engl. Transl.), 2005, vol. 45, no. 6, pp. 723–763.

  23. Scolini, C., Chane, E., Temmer, M., Kilpua, E.K.J., et al., CME–CME interactions as sources of CME geoeffectiveness: The formation of the complex ejecta and intense geomagnetic storm in 2017 early September, Astrophys. J. Suppl. Ser., 2020, vol. 247, no. 1, pp. 21–27.

    ADS  Article  Google Scholar 

  24. Lumme, E., Kilpua, E., Palmerio, E., et al., Multipoint observations of the June 2012 interacting interplanetary flux ropes, Astron. Space Sci., 2019, vol. 6, art. no. 50.

    Article  Google Scholar 

  25. Uchaikin, V.V., Stokhasticheskie modeli v kineticheskoi teorii kosmicheskikh luchei (Stochastic Models in the Kinetic Theory of Cosmic Rays), Ulyanovsk: Ulyanovsk. Gos. Univ., 2011.

  26. Crownover, R.M., Introduction to Fractals and Chaos, Burlington, MA: Jones & Bartlett, 1995.

    Google Scholar 

  27. Veselovsky, I.S., Panasyuk, M.I., Avdyushin, S.I., et al., Solar and heliospheric phenomena in October–November 2003: Causes and effects, Cosmic Res., 2004, vol. 42, no. 5, pp. 435–488.

    ADS  Article  Google Scholar 

  28. Obridko, V.N. and Shelting, B.D., Global complexes of activity, Astron. Reps., 2013, vol. 57, no. 10, pp. 848–858.

    Google Scholar 

Download references


In conclusion, the author expresses his deep gratitude to Vyacheslav Kozlov for the development, creation and software support of the Cyber-FORSHOCK automated expert system for forecasting and diagnosing geoeffective events in space weather in real time ( pred.html), based on 5-min data from the European Cosmic Ray Database.

The author also expresses his sincere gratitude and gratitude to Ilya Usoskin of the University of Oulu, Sodankila Geophysical Observatory, Finland (, for the kindly provided 5-min measurement data of the Oulu neutron monitoring station over a long period of time.

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. I. Kozlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kozlov, V.I. Forecasting Extreme Space-Weather Events on the Basis of Cosmic-Ray Fluctuations. Cosmic Res 60, 79–88 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: