Aguilar, M. et al., The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II—Results from the first seven years, Phys. Rep., 2021, vol. 894, pp. 1–116. https://doi.org/10.1016/j.physrep.2020.09.003
ADS
Article
Google Scholar
Belov, A.V., Gushchina, R.T., and Yanke, V.G., Contributions from changes in various solar indices in cycles 20–23 and 24 to the modulation of cosmic rays, Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 2, pp. 146–150. https://doi.org/10.3103/S1062873817020101
Article
Google Scholar
Aleksan’yan, T.M., Belov, A.V., Yanke, V.G., et al., Experimental studies of geomagnetic effects in cosmic rays and the spectrum of the enhancement effect before magnetic storms, Izv. Ross. Akad. Nauk, 1982, vol. 46, no. 9, pp. 1689–1691.
Google Scholar
Fujimoto, K., Murakami, K., Kondo, I., and Nagashima, K., Approximate formula for response function for cosmic ray hard component at various depths of the atmospheric and underground, Proc. 15th ICRC, Budapest, Hungary, 1977, vol. 4, p. 321.
Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., et al., (PAMELA Collaboration) Ten years of PAMELA in space, Riv. Nuovo Cimento, 2017, vol. 40, p. 473. https://doi.org/10.1393/ncr/i2017-10140-x
Article
Google Scholar
Stratospheric balloons. Chronological lists of launches worldwide since 1947. https://stratocat.com.ar/globos/ indexe.html
Aguilar, M., et al., Observation of fine time structures in the cosmic proton and helium fluxes with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett., 2018, vol. 121, id. 051101. https://doi.org/10.1103/PhysRevLett.121.051101
DiFelice, V., Pizzolotto, C., D’Urso, D., et al., Looking for cosmic ray data? The ASI Cosmic Ray Database, 35th International Cosmic Ray Conference, Proceedings of Science 1073, Busan, Korea, 2017. https:// pos.sissa.it/301/1073/pdf
Cosmic Ray Database (CRDB), 2021. https://tools.ssdc. asi.it/CosmicRays/chargedCosmicRays.jsp. Accessed July12, 2021.
Belov, A.V., Gushchina, R.T., Shlyk, N.S., and Yanke, V.G., Comparison of long-term variations in the cosmic ray flux from the data of the network of ground-based detectors PAMELA and AMS-02, Izv. Ross. Akad. Nauk, 2021, vol. 85, no. 7, pp. 100–104. https://doi.org/10.1134/S036767651900000
Article
Google Scholar
Krymskii, G.F., Altukhov, A.M., Kuz’min, A.I., et al., Cosmic ray distribution and receiving vectors of detectors, Geomagn. Aeron., 1966, vol. 6, no. 6, pp. 991–996.
Google Scholar
Nagashima, K., Three dimension anisotropy in interplanetary space. Part I. Formulation of cosmic ray daily variation produced by axis-simmetric anisotropy, Rep. Ionosphere Space Res., 1971, vol. 25, no. 3, pp. 189–211.
ADS
Google Scholar
Belov, A.V., Gushchina, R.T., and Yanke, V.G., Long-term cosmic ray variations: Rigidity spectrum, Geomagn. Aeron., 1998, vol. 38, no. 4, p. 131.
ADS
Google Scholar
Gleeson, L.J. and Axford, W.I., Solar modulation of galactic cosmic rays, Astrophys. J., 1968, vol. 154, p. 1011.
ADS
Article
Google Scholar
Vainio, R., Desorgher, L., Heynderickx, D., et al., Dynamics of the Earth’s particle radiation environment, Space Sci. Rev., 2009, vol. 147, pp. 187–231. https://doi.org/10.1007/s11214-009-9496-7
ADS
Article
Google Scholar
Ellison, D.C. and Ramaty, R., Shock acceleration of electrons and ions in solar flares, Astrophys. J., 1985, vol. 298, pp. 400–408. https://doi.org/10.1086/163623
ADS
Article
Google Scholar
Bruno, A., Bazilevskaya, G.A., Boezio, M., et al., Solar energetic particle events observed by the Pamela mission, Astrophys. J., 2018, vol. 862, no. 97. arXiv:1807.10183v1. https://doi.org/10.3847/1538-4357/aacc26
Koldobskiy, S., Raukunen, O., Vainio, R., et al., New reconstruction of event-integrated spectra (spectral fluences) for major solar energetic particle events, Astron. Astrophys., 2021, vol. 647. arXiv:2101.10234v1.
Adriani, O., et al., PAMELA measurements of cosmic-ray proton and helium spectra, Science, 2011, vol. 332, pp. 69–72. https://doi.org/10.1126/science.1199172
ADS
Article
Google Scholar
Ishkov, V.N., Space weather and specific features of the development of current solar cycle, Geomagn. Aeron., 2018, vol. 58, no. 6, pp. 753–767. https://doi.org/10.1134/S0016793218060051
ADS
Article
Google Scholar
Lockwood, J.A. and Webber, W.R., The 11-year solar modulation of cosmic rays as deduced from NM and direct measurements at low energies, J. Geophys. Res., 1967, vol. 72, pp. 5977–5989.
ADS
Article
Google Scholar
Lockwood, J.A. and Webber, W.R., Comparison of the rigidity dependence of the 11-year cosmic ray variation at the earth in two solar cycles of opposite magnetic polarity, J. Geophys. Res., 1996, vol. 101, no. A10, pp. 21573–21580. https://doi.org/10.1029/96JA01821
ADS
Article
Google Scholar
Lockwood, J.A. and Webber, W.R., The long-term variation of the cosmic radiation, Can. J. Phys., 1968, vol. 46, no. 10, pp. S903–S906. https://doi.org/10.1139/p68-379
Article
Google Scholar
Alania, M.V., Iskra, K., and Siluszyk, M., New index of longterm variations of galactic cosmic ray intensity, Adv. Space Res., 2008, vol. 41, no. 2, pp. 267–274.
ADS
Article
Google Scholar
Variation Spectrum. http://cosrays.izmiran.ru/dbs/ LTV/VariationSpectrum/Animation_Spectrum_p1/ Animation_Spectra_2017_Fast.gif. Accessed July 12, 2021.
Toptygin, I.N., Kosmicheskie luchi v mezhplanetnykh magnitnykh polyakh (Cosmic Rays in Interplanetary Magnetic Fields), Moscow: Nauka, 1983.
Yanke, V.G., Belov, A.V., Gushchina, R.T., et al., Experimental spectrum of cosmic ray variations in the Earth’s orbit from the AMS-02 data, Izv. Russ. Akad. Nauk, 2021, vol. 85, no. 9, pp. 1350–1353. https://doi.org/10.31857/S0367676521090349
Article
Google Scholar