Skip to main content

Variations of Protons and Doubly Ionized Helium Ions in the Solar Wind

Abstract

We investigated variations on scales of 104–105 km and local spatial inhomogeneities in the density of protons Np, doubly ionized helium ions (α-particles) Nα, and the relative abundance of helium Nα/Np in the solar wind. Measurements taken by two spacecraft, SPEKTR-R and WIND, separated in space by a distance of more than 1 million km, are analyzed, and the correlation coefficient between measurements of the corresponding parameters at different time intervals is determined. For intervals with a generally high level of correlation of plasma parameters, variations in the level of local (over shorter subintervals) correlation were analyzed. We showed that a low level of local correlation of all studied parameters is relatively common. The level of local correlation depends on the type of large-scale solar wind stream, as well as on the bulk velocity of the flow and the degree of flux variability. In addition, a low level of local correlation is often characterized by a negative component Bx of the interplanetary magnetic field. The regions of local spatial inhomogeneities in the densities of protons and helium and the relative abundance of helium are identified and their size is estimated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Feldman, W.C., Asbrige, J.R., Bame, S.J., et al., Longterm variations of selected solar wind properties: IMP 6, 7 and 8 results, J. Geophys. Res., 1978, vol. 83, no. 5, pp. 2177–2189.

    ADS  Article  Google Scholar 

  2. Schwenn, R. and Marsch, E., Physics of the Inner Heliosphere II. Particles, Waves and Turbulence, Berlin: Springer, 1991.

    Google Scholar 

  3. Zelenyi, L.M. and Milovanov, A.V., Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics, Phys. Usp., 2004, vol. 47, pp. 749–788.

    Article  Google Scholar 

  4. Ermolaev, Yu.I., Where are medium-scale solar-wind variations formed?, Geomagn. Aeron., 2014, vol. 54, no. 2, pp. 162–163.

    ADS  Article  Google Scholar 

  5. Bavassano, B., Recent observations of MHD fluctuations in the solar wind, Ann. Geophys., 1994, vol. 12, pp. 97–104. https://doi.org/10.1007/s00585-994-0097-1

    ADS  Article  Google Scholar 

  6. Malara, F., Primavera, L., and Veltri, P., Compressive fluctuations generated by time evolution of Alfvénic perturbations in the solar wind current sheet, J. Geophys. Res., 1996, vol. 101, no. A10, pp. 21597–21617.

    ADS  Article  Google Scholar 

  7. Borovsky, J.E., Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?, J. Geophys. Res., 2008, vol. 113, no. A08. https://doi.org/10.1029/2007JA012684

  8. Bruno, R., Carbone, V., Veltri, P., et al., Identifying intermittency events in the solar wind, Planet. Space Sci., 2001, vol. 49, no. 12, pp. 1201–1210.

    ADS  Article  Google Scholar 

  9. Mariani, F., Bavassano, B., and Villante, U., A statistical study of magnetohydrodynamic discontinuities in the inner Solar System–HELIOS-1 and HELIOS-2, Sol. Phys., 1983, vol. 83, no. 2, pp. 349–365.

    ADS  Article  Google Scholar 

  10. Horbury, T.S., Burgess, D., Fränz, M., et al., Three spacecraft observations of solar wind discontinuities, Geophys. Res. Lett., 2001, vol. 28, no. 4, pp. 677–680.

    ADS  Article  Google Scholar 

  11. Riazantseva, M.O., Zastenker, G.N., Richardson, J.D., et al., Sharp boundaries of small- and middle-scale solar wind structures, J. Geophys. Res., 2005, vol. 110, no. A12. https://doi.org/10.1029/2005JA011307

  12. Chang, S.C. and Nishida, A., Spatial structure of transverse oscillations in the interplanetary magnetic field, Astrophys. Space Sci., 1973, vol. 23, pp. 301–314.

    ADS  Article  Google Scholar 

  13. Crooker, N.U., Siscoe, G.L., Russell, C.T., et al., Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements, J. Geophys. Res., 1982, vol. 87, pp. 2224–2230.

    ADS  Article  Google Scholar 

  14. Richardson, J.D. and Paularena, K.I., Plasma and magnetic field correlations in the solar wind, J. Geophys. Res., 2001, vol. 106, pp. 239–251.

    ADS  Article  Google Scholar 

  15. Zastenker, G.N., Dalin, P.A., Petrukovich, A.A., et al., Solar wind structure dynamics by multipoint observations, Phys. Chem. Earth C, 2000, vol. 25, pp. 137–140.

    Google Scholar 

  16. Dalin, P.A., Zastenker, G.N., Paularena, K.I., et al., A survey of large, rapid solar wind dynamic pressure changes observed by Interball-1 and IMP-8, Ann. Geophys., 2002, vol. 20, pp. 293–299.

    ADS  Article  Google Scholar 

  17. Neugebauer, M., Mariner 2 observations of the solar wind average properties, J. Geophys. Res., 1966, vol. 71, no. 19, pp. 4469–4484.

    ADS  Article  Google Scholar 

  18. Ogilvie, K.W. and Wilkerson, T.D., Helium abundance in the solar wind, Sol. Phys., 1969, vol. 8, no. 2, pp. 435–449.

    ADS  Article  Google Scholar 

  19. Geiss, J., Processes affecting abundances in the solar wind, Space Sci. Rev., 1982, vol. 33, nos. 1–2, pp. 201–217.

    ADS  Article  Google Scholar 

  20. Geiss, J., Gloeckler, G., and Von Steiger, R., Origin of the solar wind from composition data, Space Sci. Rev., 1995, vol. 72, nos. 1–2, pp. 49–60.

    ADS  Article  Google Scholar 

  21. Ermolaev, Yu. I., Observation of He++ ions in the solar wind, Cosmic Res., 1994, vol. 32, no. 1, p. 71.

    Google Scholar 

  22. Zurbuchen, T.H., Weberg, M., von Steiger, R., et al., Composition of coronal mass ejections, Astrophys. J., 2016, vol. 826, no. 1, p. 10. https://doi.org/10.3847/0004-637X/826/1/10

    ADS  Article  Google Scholar 

  23. Yermolaev, Y.I. and Stupin, V.V., Helium abundance and dynamics in different types of solar wind streams: The Prognoz 7 observations, J. Geophys. Res., 1997, vol. 102, no. A2, pp. 2125–2136.

    ADS  Article  Google Scholar 

  24. Richardson, J.D., Richardson, I.G., Kasper, J.C., et al., Helium variation in the solar wind, Proc. ISCS 2003 Symposium, ESA SP-535, 2003, pp. 521–526.

    ADS  Google Scholar 

  25. Kasper, J.C., Stevens, M.L., Lazarus, A.J., et al., Solar wind helium abundance as a function of speed and heliographic latitude variation through a solar cycle, Astrophys. J., 2007, vol. 660, no. 1, pp. 901–910.

    ADS  Article  Google Scholar 

  26. Kasper, J.C., Stevens, M.L., Korrecket, K.E., et al., Evolution of the relationships between abundance, minor ion charge state, and solar wind speed, Astrophys. J., 2012, vol. 745, no. 2, p. 162.

    ADS  Article  Google Scholar 

  27. Sapunova, O.V., Borodkova, N.L., Zastenker, G.N., et al., Behavior of He++ ions at the front of an interplanetary shock, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 6, pp. 708–713.

  28. Ogilvie, K.W. and Hirshberg, J., The solar cycle variation of the solar wind helium abundance, J. Geophys. Res., 1974, vol. 79, no. 2, pp. 4595–4602.

    ADS  Article  Google Scholar 

  29. Zastenker, G.N., Koloskova, I.V., Ryazantseva, M.O., et al., Observation of fast variations of the helium-ion abundance in the solar wind, Cosmic Res., 2014, vol. 52, no. 1, pp. 25–36.

    Article  Google Scholar 

  30. Safrankova, J., Nemecek, Z., Cagas, P., et al., Short-scale variations of the solar wind helium abundance, Astrophys. J., 2013, vol. 778, p. 25.

    ADS  Article  Google Scholar 

  31. Safrankova, J., Nemecek, Z., Prech, L., et al., Fast solar wind monitor (BMSW): description and first results, Space Sci. Rev., 2013, vol. 175, nos. 1–4, pp. 165–182.

    ADS  Article  Google Scholar 

  32. Zastenker, G.N., Safrankova, J., Nemecek, Z., et al., Fast measurements of parameters of the Solar Wind using the BMSW instrument, Cosmic Res., 2013, vol. 51, no. 2, pp. 78–89.

    ADS  Article  Google Scholar 

  33. Ogilvie, K., Chornay, D., and Fritzenreiter, R., SWE, a comprehensive plasma instrument for the wind spacecraft, Space Sci. Rev., 1995, vol. 71, nos. 1–4, pp. 55–77. https://doi.org/10.1007/BF00751326

    ADS  Article  Google Scholar 

  34. Lin, R.P., Anderson, K.A., Ashford, S., et al., A three-dimensional plasma and energetic particle investigation for the wind spacecraft, Space Sci. Rev., 1995, vol. 71, pp. 125–153. https://doi.org/10.1007/BF00751328

    ADS  Article  Google Scholar 

  35. Lepping, R.P., Acuna, M.H., Burlaga, L.F., et al., The WIND magnetic field investigation, Space Sci. Rev., 1995, vol. 71, pp. 207–229. https://doi.org/10.1007/BF00751330

    ADS  Article  Google Scholar 

  36. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., et al., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to their colleagues at the Institute of Cosmic Research of the Russian Academy of Sciences and Charles University (Prague, Czech Republic) for the possibility of using the data from the BMSW instrument on the SPEKTR-R spacecraft (http://catalog-sw-msh. plasma-f.cosmos.ru/, http://aurora.troja.mff.cuni.cz/ spektr-r/project/), as well as the creators of the WIND spacecraft database (http://omniweb.gsfc.nasa.gov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Khokhlachev.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khokhlachev, A.A., Riazantseva, M.O., Rakhmanova, L.S. et al. Variations of Protons and Doubly Ionized Helium Ions in the Solar Wind. Cosmic Res 59, 415–426 (2021). https://doi.org/10.1134/S0010952521060022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952521060022