Skip to main content
Log in

Resonance Effects when Moving a Small Spacecraft around the Center of Mass in a Deployable Tether System

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract—

The resonance motions of a small spacecraft relative to the center of mass when deploying a tether system are analyzed. The tether system is deployed from a base spacecraft moving in near-Earth orbit. The small spacecraft makes angular motions relative to the direction of the tether; in this case, the tension force of the tether varies according to a given program. The small spacecraft is a revolving body and is characterized by small static and dynamic asymmetries. The lowest-order resonance is analyzed, during implementing of which there is a “lunar” motion of the spacecraft relative to the tether direction. To study the resonance effects, we use the approximate nonlinear equations of motion of the spacecraft obtained by the method of integral manifolds using the asymptotic approach. The necessary conditions for the “capture” of the system into a resonance, i.e., the conditions under which the implementation of long-term resonance modes of the spacecraft motion is possible, have been obtained. The value of the probability of “capture” into a resonance is estimated and the conditions, under which the probability of “capture” is close to unity, are determined. A typical tether release program is considered that is analyzed from the point of view of the implementation of possible resonance effects. The results obtained using the approximate equations of motion are confirmed by numerical modeling using the initial equations of the angular spacecraft motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alpatov, A.P., Beletskii, V.V., Dranovskii, V.I., et al., Dinamika kosmicheskikh sistem s trosovymi i sharnirnymi soedineniyami (Dynamics of Tethered and Jointed Space Systems), Moscow–Izhevsk: Regulyarnaya i khaoticheskaya dinamika, Inst. Komp. Issled., 2007.

  2. Beletskii, V.V. and Levin, E.M., Dinamika kosmicheskikh trosovykh sistem (Dynamics of Tethered Space Systems), Moscow: Nauka, 1990.

  3. Zabolotnov, Yu.M., Resonant motions of a statically stable Lagrange top at small nutation angles, Prikl. Mat. Mekh., 2016, vol. 80, no. 4, pp. 432–443.

    MathSciNet  MATH  Google Scholar 

  4. Zabolotnov, Yu.M., Resonant motions of a statically stable Lagrange top, Prikl. Mat. Mekh., 2019, vol. 83, no. 4, pp. 615–635.

    MATH  Google Scholar 

  5. Zabolotnov, Yu.M. and Naumov, O.N., Motion of a descent capsule relative to its center of mass when deploying the orbital tether system, Cosmic Res., 2012, vol. 50, no. 2, pp. 177–187.

    Article  ADS  Google Scholar 

  6. Zabolotnov, Yu.M., Application of the method of integral manifolds for the analysis of the spatial motion of a rigid tethered body, Mekh. Tverd. Tela. Izv. Ross. Akad. Nauk, 2016, no. 4, pp. 3–18.

  7. Yaroshevskii, V.A., Dvizhenie neupravlyaemogo tela v atmosfere (Motion of an Uncontrollable Body in the Atmosphere), Moscow: Mashinostroenie, 1978.

  8. Zabolotnov, Yu.M. and Lyubimov, V.V., Application of the method of integral manifolds for construction of resonant curves for the problem of spacecraft entry into the atmosphere, Cosmic Res., 2003, vol. 41, no. 5, pp. 453–459.

    Article  ADS  Google Scholar 

  9. Kruijff, M., Tethers in Space, Edelkarper, Netherlands: Delta-Utec Space Research, 2011.

    Google Scholar 

  10. Belokonov, I.V., Timbai, I.A., and Nikolaev, P.N., Analysis and synthesis of motion of aerodynamically stabilized nanosatellites of the CubeSat design, Gyroscopy Navig., 2018, vol. 9, no. 4, pp. 287–300.

    Article  Google Scholar 

  11. Zabolotnov, Yu.M., A method for studying the resonant motion of one nonlinear oscillatory system, Mekh. Tverd. Tela. Izv. Ross. Akad. Nauk, 1999, no. 1, pp. 33–45.

  12. Strygin, V.V. and Sobolev, V.A., Razdelenie dvizhenii metodom integral’nykh mnogoobrazii (Separation of Motions by the Method of Integral Manifolds), Moscow: Nauka, 1988.

  13. Arnol’d V.I., Kozlov V.V., and Neishtadt, A.I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki (Mathematical Aspects of Classical and Celestial Mechanics), Moscow: Vseross. Inst. Nauchn. Tekh. Inf., vol. 2, 1985.

  14. Zhuravlev, V.F. and Klimov, D.M., Prikladnye metody v teorii kolebanii (Applied Methods in Oscillation Theory) Moscow: Nauka, 1988.

  15. Neishtadt, A.I., Voprosy teorii vozmushchenii nelineinykh sistem (Questions of Perturbation Theory for Nonlinear Systems), Moscow: Mosk. Gos. Univ., 1988.

  16. Neishtadt, A., Averaging method for systems with separatrix crossing, Nonlinearity, 2017, vol. 30, no. 5, pp. 2871–2917.

    Article  ADS  MathSciNet  Google Scholar 

  17. Sadon, Yu.A., Vtorichnyi rezonansnyi effekt v dvukhchastotnoi sisteme s bystrymi fazami. Ustoichivost’ dvizheniya (Secondary Resonance Effect in a Two-Frequency System with Fast Phases. Stability of Motion), Novosibirsk: Nauka, 1985.

  18. Zabolotnov, Yu.M. and Lyubimov, V.V., Secondary resonance effect in the motion of a spacecraft in the atmosphere, Cosmic Res., 1998, vol. 36, no. 2, pp. 194–201.

    ADS  Google Scholar 

  19. Ishkov, S.A. and Naumov, S.A., Control of the orbital tether system deployment, Vestn. Samar. Gos. Aerokosm. Univ., 2006, no. 1, pp. 81–90.

  20. Zabolotnov, Yu.M., Control of the deployment of an orbital tether system that consists of two small spacecraft, Cosmic Res., 2017, vol. 55, no. 3, pp. 224–233.

    Article  Google Scholar 

  21. Mitropol’skii, Yu.A. and Lykova, O.B., Integral’nye mnogoobraziya v nelineinoi mekhanike (Integral Manifolds in Nonlinear Mechanics), Moscow: Nauka, 1973.

Download references

Funding

This study was carried out with the financial support of the Russian Foundation for Basic Research and the State Natural Science Foundation of China within the framework of scientific project no. 21-51-53001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Zabolotnov.

Additional information

Translated by N. Topchiev

APPENDIX

APPENDIX

Terms included in the initial equations of SS motion (1)–(5).

$$\begin{gathered} \Delta M_{x}^{d} = \frac{{\Delta J}}{J}\left\{ {2{{\omega }_{{zn}}}\frac{{{{K}_{{xt}}} - {{K}_{x}}\cos \alpha }}{{\sin \alpha }}\cos 2\varphi } \right. \\ + \,\,\sin 2\varphi \left. {\left[ {{{{\left( {\frac{{{{K}_{{xt}}} - {{K}_{x}}\cos \alpha }}{{J\sin \alpha }}} \right)}}^{2}} - \omega _{{zn}}^{2}} \right]J} \right\} \\ + \,\,\frac{{{{J}_{{yz}}}}}{J}\left\{ { - 2{{\omega }_{{zn}}}\frac{{{{K}_{{xt}}} - {{K}_{x}}\cos \alpha }}{{\sin \alpha }}\sin 2\varphi } \right. \\ + \,\,\cos 2\varphi \left. {\left[ {{{{\left( {\frac{{{{K}_{{xt}}} - {{K}_{x}}\cos \alpha }}{{J\sin \alpha }}} \right)}}^{2}} - \omega _{{zn}}^{2}} \right]J} \right\} \\ - \,\,{{J}_{{xzn}}}\frac{{({{K}_{{xt}}} - {{K}_{x}}\cos \alpha )}}{{J\sin \alpha }}\frac{{{{K}_{x}}}}{{{{J}_{x}}}} - {{J}_{{xyn}}}\frac{{{{K}_{x}}}}{{{{J}_{x}}}}{{\omega }_{{zn}}}, \\ \end{gathered} $$
$$\begin{gathered} \Delta M_{{zn}}^{d} = {{J}_{{xyn}}}\frac{{{{K}_{x}}}}{{{{J}_{x}}}}\left[ {\frac{{{{K}_{x}}}}{{{{J}_{x}}}} + \frac{{{{K}_{x}}\left( {1 + {{{\cos }}^{2}}\alpha } \right) - 2{{K}_{{xt}}}\cos \alpha }}{{J{{{\sin }}^{2}}\alpha }}} \right] \\ + \,\,2\Delta J\left[ {\left( {\frac{{{{K}_{x}}}}{{{{J}_{x}}}} + \frac{{{{K}_{x}}\cos \alpha - {{K}_{{xt}}}}}{{J{{{\sin }}^{2}}\alpha }}\cos \alpha } \right)} \right. \\ \times \,\,\left( {{{\omega }_{{zn}}}\sin 2\varphi + \frac{{{{K}_{x}}\cos \alpha - {{K}_{{xt}}}}}{{J\sin \alpha }}\cos 2\varphi } \right) \\ \left. { + \,\,\frac{{\left( {{{K}_{x}}\cos \alpha \, - \,{{K}_{{xt}}}} \right)\left( {{{K}_{x}}\, - \,{{K}_{{xt}}}\cos \alpha } \right)}}{{{{J}^{2}}{{{\sin }}^{3}}\alpha }}\, + \,\frac{{{{M}_{{zn}}}}}{J}{{{\sin }}^{2}}\varphi } \right] \\ - \,\,{{J}_{{yz}}}\left[ {2\left( {\frac{{{{K}_{x}}}}{{{{J}_{x}}}} + \frac{{{{K}_{x}}\cos \alpha - {{K}_{{xt}}}}}{{J{{{\sin }}^{2}}\alpha }}\cos \alpha } \right)} \right. \\ \times \,\,\left. {\left( { - {{\omega }_{{zn}}}\cos 2\varphi \, + \,\frac{{{{K}_{x}}\cos \alpha \, - \,{{K}_{{xt}}}}}{{J\sin \alpha }}\sin 2\varphi } \right)\, - \,\frac{{{{M}_{{zn}}}}}{J}\sin 2\varphi } \right], \\ \end{gathered} $$
$$\begin{gathered} \Delta M_{x}^{s} = T\sin \alpha \left( {\Delta y\sin \varphi + \Delta z\cos \varphi } \right), \\ \Delta M_{{zn}}^{s} = T\cos \alpha \left( { - \Delta y\cos \varphi + \Delta z\sin \varphi } \right), \\ \Delta M_{{xt}}^{{}} = \frac{{{{K}_{x}} - {{K}_{{xt}}}\cos {{\alpha }}}}{{\sin {{\alpha }}}}\Delta {{{{\omega }}}_{{zt}}} - J{{{{\omega }}}_{{zn}}}\Delta {{{{\omega }}}_{{yt}}}, \\ \end{gathered} $$
$$\begin{gathered} \Delta {{{\dot {\varphi }}}_{d}} = \frac{{{{J}_{{xyn}}}}}{{{{J}_{x}}}}\frac{{2{{K}_{x}}\cos \alpha - {{K}_{{xt}}}}}{{J\sin \alpha }} + \frac{{{{J}_{{xzn}}}}}{{{{J}_{x}}}}{{\omega }_{{zn}}} \\ + \,\,\frac{{{{J}_{{yzn}}}}}{{{{J}_{x}}}}{{\omega }_{{zn}}}{\text{cot}}\alpha + \frac{{\Delta {{J}_{n}}}}{J}\frac{{{{K}_{x}}\cos \alpha - {{K}_{{xt}}}}}{{J\sin \alpha }}{\text{cot}}\alpha , \\ \end{gathered} $$
$$\begin{gathered} \Delta {{{\dot {\psi }}}_{d}} = - \frac{{{{J}_{{xyn}}}}}{J}\frac{{{{K}_{x}}}}{{{{J}_{x}}\sin \alpha }} - \frac{{{{J}_{{yzn}}}}}{{J\sin \alpha }}{{\omega }_{{zn}}} \\ - \,\,\frac{{\Delta {{J}_{n}}}}{J}\frac{{{{K}_{x}}\cos \alpha - {{K}_{{xt}}}}}{{J{{{\sin }}^{2}}\alpha }}, \\ \end{gathered} $$

where

$$\begin{gathered} {{J}_{{yn}}} = J - \Delta {{J}_{n}},\,\,\,\,{{J}_{{zn}}} = J + \Delta {{J}_{n}},\,\,\,\,\,J = {{\left( {{{J}_{y}} + {{J}_{z}}} \right)} \mathord{\left/ {\vphantom {{\left( {{{J}_{y}} + {{J}_{z}}} \right)} 2}} \right. \kern-0em} 2}, \\ \Delta J = {{\left( {{{J}_{z}} - {{J}_{y}}} \right)} \mathord{\left/ {\vphantom {{\left( {{{J}_{z}} - {{J}_{y}}} \right)} 2}} \right. \kern-0em} 2}, \\ \end{gathered} $$
$$\begin{gathered} {{J}_{{xyn}}} = {{J}_{{xy}}}\cos \varphi - {{J}_{{xz}}}\sin \varphi , \\ {{J}_{{xzn}}} = {{J}_{{xz}}}\cos \varphi + {{J}_{{xy}}}\sin \varphi , \\ \end{gathered} $$
$$\begin{gathered} {{J}_{{yzn}}} = {{J}_{{yz}}}\cos 2\varphi + \Delta J\sin 2\varphi , \\ \Delta {{J}_{n}} = \Delta J\cos 2\varphi - {{J}_{{yz}}}\sin 2\varphi , \\ \end{gathered} $$

\(\Delta {{{{\omega }}}_{{yt}}},\Delta {{{{\omega }}}_{{zt}}}\) are angular velocities of rotation of the coordinate system \(c{{x}_{t}}{{y}_{t}}{{z}_{t}}\) [5].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotnov, Y.M. Resonance Effects when Moving a Small Spacecraft around the Center of Mass in a Deployable Tether System. Cosmic Res 59, 291–304 (2021). https://doi.org/10.1134/S0010952521040079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952521040079

Navigation