Skip to main content
Log in

Modeling Particle Fluxes and Absorbed Dose for Protection from Cosmic Rays Using the SHIELD Transport Code

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A special version of the SHIELD transport code has been developed intended for radiation protection purposes in space. The calculation of the fluxes of primary and secondary particles and the absorbed dose rate in a water phantom behind various shielding under the influence of galactic cosmic rays (GCRs) using the GCR model developed by the Institute of Nuclear Physics, Moscow State University. The code architecture is briefly described as a version of SHIELD including models of nuclear reactions. Stopping power dE/dX(E) is calculated in the energy range of 10 keV/nucleon–100 GeV/nucleon. The calculation was performed in spherical geometry, which allows, in a simple formulation of the problem, to compare the fluxes of particles of different types in the phantom, as well as to estimate the contribution to the dose of different GCR components depending on the protection parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Dementyev, A.V. and Sobolevsky, N.M., SHIELD—universal Monte Carlo hadron transport code: scope and applications, Radiat. Meas., 1999, vol. 30, pp. 553–557. https://doi.org/10.1016/S1350-4487(99)00231-0

    Article  Google Scholar 

  2. Kuznetsov, N.V., Popova, E.P., and Panasyuk, M.I., Empirical model of long-time variations of galactic cosmic ray particle fluxes, J. Geophys. Res. Space Phys., 2017, vol. 122, no. 2, pp. 1463–1472. https://doi.org/10.1002/2016JA022920

    Article  ADS  Google Scholar 

  3. Kuznetsov, N.V., Popova, E.P., Panasyuk, M.I., and Podzolko, M.V., Empirical model of galactic cosmic ray particle fluxes based on the experimental data in solar cycles 21–24, Proceedings of Science, vol. 301, 2017, id. (ICRC2017)001. https://doi.org/10.22323/1.301.0001

  4. Latysheva, L.N. and Sobolevsky, N.M., LOENT—program for simulating neutron transport in complex geometries by the Monte Carlo method, Preprint of Inst. for Nuclear Research, Russ. Acad. Sci., Moscow, 2008, no. 1200.

  5. Abagyan, L.P., Bazazyants, N.O., Nikolaev, M.N., and Tsibulya, A.M., Gruppovye konstanty dlya rascheta reaktorov i zashchity (Group Constants for Calculating Reactors and Protection), Moscow: Energoizdat, 1981.

  6. Sobolevsky, N.M., Algorithm for storing the hadron cascade tree in the SHIELD transport code, Preprint of Inst. for Nuclear Research, Russ. Acad. Sci., Moscow, 2015, no. 1398.

  7. Botvina, A.S., Dementyev, A.V., Smirnova, O.N., et al., MSDM—multi stage dynamical model, in International Codes and Model Intercomparison for Intermediate Energy Activation Yields, 1997, vol. 97(1), no. 14, pp. 307–312.

  8. Toneev, V.D. and Gudima, K.K., Particle emission in light and heavy ion reactions, Nucl. Phys. A, 1983, vol. 400, pp. 173–189.

    Article  ADS  Google Scholar 

  9. Amelin, N.S., Gudima, K.K., and Toneev, V.D., Ultrarelativistic nucleus-nucleus collisions in the dynamic model of independent quark-gluon strings, Yad. Fiz., 1983, vol. 51, pp. 1730–1743.

    Google Scholar 

  10. Amelin, N.S., Gudima, K.K., Sivoklokov, S.Yu., and Toneev, V.D., Further development of the quark-gluon string model for describing high-energy collisions with a nuclear target, Yad. Fiz., 1990, vol. 52, pp. 272–282.

    Google Scholar 

  11. Gudima, K.K., Mashnik, S.G., and Toneev, V.D., Cascade-exciton model of nuclear reactions, Nucl. Phys. A., 1983, vol. 401, no. 2, pp. 329–361. https://doi.org/10.1016/0375-9474(83)90532-8

    Article  ADS  Google Scholar 

  12. Botvina, A.S., Iljinov, A.S., Mishustin, I.N., et al., Statistical simulation of the break-up of highly excited nuclei, Nucl. Phys. A., 1987, vol. 475, no. 4, pp. 663–686. https://doi.org/10.1016/0375-9474(87)90232-6

    Article  ADS  Google Scholar 

  13. Eren, N., Buyukcizmeci, N., Ogul, R., and Botvina, A.S., Mass distribution in the disintegration of heavy nuclei, Eur. Phys. J. A, 2013, vol. 49, art. no. 48. https://doi.org/10.1140/epja/i2013-13048-1

    Article  ADS  Google Scholar 

  14. Bondorf, J.P., Botvina, A.S., Iljinov, A.S., et al., Statistical multifragmentation of nuclei, Phys. Rep., 1995, vol. 257, no. 3, pp. 133–221. https://doi.org/10.1016/0370-1573(94)00097-M

    Article  ADS  Google Scholar 

  15. Gudowska, I., Sobolevsky, N., Andreo, P., Belkić, D., and Brahme, A., Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT, Phys. Med. Biol., 2004, vol. 49, no. 10, pp. 1933–1958. https://doi.org/10.1088/0031-9155/49/10/008

    Article  Google Scholar 

  16. Hansen, D., Luehr, A., Sobolevsky, N., and Bassler, N., Optimizing SHIELD-HIT for carbon ion treatment, Phys. Med. Biol., 2012, vol. 57, no. 8, pp. 2393–2409. https://doi.org/10.1088/0031-9155/57/8/2393

    Article  Google Scholar 

  17. Berger, M.J., Inokuti, M., Andersen, H.H., et al., Stopping powers and ranges for protons and alpha particles, ICRU Report 49, Bethesda, MD: International Commission of Radiation Units and Measurements, 1993.

    Google Scholar 

  18. Sigmund, P., Bimbot, R., Geissel, H., et al., Stopping of ions heavier than helium. ICRU report 73, J. Int. Comm. Radiat. Units Meas., 2005, vol. 5, no. 1. https://doi.org/10.1093/jicru/ndi015

  19. Samoilov, A.S., Ushakov, I.B., and Shurshakov, V.A., Radiation impact in orbital and interplanetary space flights: monitoring and protection, Ekol. Chel., 2019, no. 1, pp. 4–9.

  20. Tanabashi, M., et al. Review of particle physics, Phys. Rev. J., 2018, vol. 98, id. 030001. https://doi.org/10.1103/PhysRevD.98.030001

  21. Sobolevsky, N.M. and Latysheva L.N., Models and algorithms for calculating the stopping power dE/dX(E) in the SHIELD transport code, Preprint of Inst. for Nuclear Research, Russ. Acad. Sci., Moscow, 2019, no. 1443.

  22. Sobolevsky, N.M., Metod Monte-Karlo v zadachakh o vzaimodeistvii chastits s veshchestvom (Monte Carlo Method in Problems of Particle–Matter Interaction), Moscow: FIZMATLIT, 2017.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 17-29-01022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Sobolevsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolevsky, N.M., Latysheva, L.N., Kuznetsov, H.V. et al. Modeling Particle Fluxes and Absorbed Dose for Protection from Cosmic Rays Using the SHIELD Transport Code. Cosmic Res 59, 259–267 (2021). https://doi.org/10.1134/S0010952521030096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952521030096

Navigation