Skip to main content
Log in

On Asymmetric Zeipel–Lidov–Kozai Cycles in Mean Motion Resonances

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Zeipel–Lidov–Kozai cycles is the name given to long-term interrelated changes in the inclinations and eccentricities of the orbits of natural and artificial celestial bodies. They were discovered independently by H. von Zeipel (1910), M. Lidov (1961), and Y. Kozai (1962). Originally, the existence of Zeipel–Lidov–Kozai cycles was established for nonresonant motions of celestial bodies. Approaches to studying such secular effects in the case of resonance of orbital movements appeared much later. It turned out that, at resonance, the Zeipel–Lidov–Kozai cycles may not have the symmetry that these cycles always have in nonresonant situations within the framework of the restricted three-body problem. Moreover, results of numerical studies indicate the presence of asymmetric Zeipel–Lidov–Kozai cycles in the dynamics of a number of Kuiper belt objects moving in resonance with Neptune.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. von Zeipel, H., Sur l’application des sèries de M. Lindstedt à l'étude du mouvement des comètes périodiques, Astron. Nachr., 1910, vol. 183, pp. 345–418.

    Article  ADS  Google Scholar 

  2. Ito, T. and Ohtsuka, K., The Lidov–Kozai Oscillation and Hugo von Zeipel. Monogr. Environ. Earth Planets, 2019, vol. 7, no. 1, pp. 1–113.

    Article  ADS  Google Scholar 

  3. Lidov, M.L., Evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies, Iskusstv. Sputniki Zemli, 1961, no. 8, pp. 5–45.

  4. Kozai, Y., Secular perturbations of asteroids with high inclinations and eccentricities, Astron. J., 1962, vol. 67, pp. 591–598.

    Article  ADS  MathSciNet  Google Scholar 

  5. Vashkov’yak, M.A., Orbit evolution in the limited circular twice averaged three-body problem, Kosm. Issled., 1981, vol. 19, no. 1, pp. 5–18.

    ADS  Google Scholar 

  6. Wisdom, J., A perturbative treatment of motion near 3/1 commensurability, Icarus, 1985, vol. 63, pp. 272–289.

    Article  ADS  Google Scholar 

  7. Gallardo, T., Hugo, G., and Pais, P., Survey of Kozai dynamics beyond Neptune, Icarus, 2012, vol. 220, pp. 392–403.

    Article  ADS  Google Scholar 

  8. Šidlichovský, M., A non-planar circular model for the 4/7 resonance, Celestial Mech. Dyn. Astron., 2005, vol. 93, pp. 167–185.

    Article  ADS  MathSciNet  Google Scholar 

  9. Saillenfest, M., Fouchard, M., Tommei, G., et al., Long-term dynamics beyond Neptune: Secular models to study the regular motions, Celestial Mech. Dyn. Astron-., 2016, vol. 126, pp. 369–403.

    Article  ADS  MathSciNet  Google Scholar 

  10. Murray, C. and Dermott, S., Solar System Dynamics, Cambridge: Cambridge Univ. Press, 1999; Moscow: Fizmatlit, 2009.

  11. Morbidelli, A., Modern Celestial Mechanics. Aspects of Solar System Dynamics, London: Taylor and Francis, 2002; Moscow: IKI RAN, 2014.

  12. Morbidelli, A., Levinson, H.F., and Gomes, R., The dynamical structure of the Kuiper belt and its primordial origin, in: The Solar System Beyond Neptune, Barucci, M.A., Cruikshank, D.P., and Morbidelli, A., Eds., Tucson: Univ. of Arizona Press, 2008, pp. 275–292.

    Google Scholar 

  13. Shevchenko, I.I., The Lidov–Kozai Effect – Applications in Exoplanet Research and Dynamical Astronomy, Springer, 2017.

    Book  Google Scholar 

  14. Sidorenko, V.V., Neishtadt, A.I., Artemyev, A.V., et al., Quasi-satellite orbits in the general context of dynamics in the 1 : 1 mean motion resonance. Perturbative treatment, Celestial Mech. Dyn. Astron., 2014, vol. 120, pp. 131–162.

    Article  ADS  MathSciNet  Google Scholar 

  15. Beaugé, C., Asymmetric librations in exterior resonances, Celestial Mech. Dyn. Astron., 1994, vol. 60, pp. 225–248.

    Article  ADS  MathSciNet  Google Scholar 

  16. Chambers, J.E., A hybrid symplectic integrator that permits close encounters between massive bodies, Mon. Not. R. Astron. Soc., 1999, vol. 304, pp. 793–799.

    Article  ADS  Google Scholar 

  17. Kankiewicz, P. and Wlodarczyk, I., Dynamical lifetimes of asteroids in retrograde orbits, Mon. Not. R. Ast-ron. Soc., 2017, vol. 468, pp. 4143–4150.

    Article  ADS  Google Scholar 

  18. Li, M., Huang, Y., and Gong, S., Survey of asteroids in retrograde mean motion resonances with planets, Astro-n. Astrophys., 2019, vol. 630, id A60.

  19. Wiegert, P., Connors, M., and Veillet, C., A retrograde co-orbital asteroid of Jupiter, Nature, 2017, vol. 543, pp. 687–689.

    Article  ADS  Google Scholar 

  20. Sidorenko, V.V., Neishtadt, A.I., Artemyev, A.V., and Zelenyi, L.M., Quasi-satellite regime of motion of small celestial bodies: Formation and destruction, Dokl. Phys., 2013, vol. 58, no. 5, pp. 207–211.

    Article  ADS  Google Scholar 

  21. Saillenfest, M. and Lari, G., The long-term evolution of known resonant trans-Neptunian objects, Astron. Astrophys., 2017, vol. 603, id A79.

  22. Sidorenko, V.V., Evolution of asteroid orbits at the 3:1 their mean motion resonance with Jupiter (planar problem), Cosmic Res., 2006, vol. 44, no. 5, pp. 440–455.

  23. Sidorenko, V.V., Dynamics of “jumping” Trojans: a perturbative treatment, Celestial Mech. Dyn. Astron., 2018, vol. 130, no. 10, id 67.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sidorenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, S.S., Sidorenko, V.V. On Asymmetric Zeipel–Lidov–Kozai Cycles in Mean Motion Resonances. Cosmic Res 58, 249–255 (2020). https://doi.org/10.1134/S0010952520040097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952520040097

Navigation