Skip to main content
Log in

Winter Anomaly in the Critical Frequency of the Nighttime Polar Ionosphere’s E Layer

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Analysis of the properties of the winter anomaly in E layer critical frequency foE in the nighttime (22.00–02.00 LT) polar ionosphere is performed based on data of the Tromso digital ionospheric station during 1995–1998. It is found that for these conditions, the winter anomaly in foE, i.e., the excess of the winter values of foE over summer values is typical not only for the median, but for the values of foE averaged over a month as well. The amplitude of the winter anomaly in foE is minimal for quiet geomagnetic conditions and reaches a maximum under moderate and enhanced geomagnetic activity (Kp = 3–4), mainly due to stronger increase in foE with geomagnetic activity increase in winter. This property of the winter anomaly is qualitatively and even quantitatively similar to the property of winter–summer asymmetry in fluxes of accelerated electrons to which discrete aurorae are related. That is why foE data from ionospheric stations could serve as an indicator of such fluxes in the polar ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Taubenheim, J., Meteorological control of the D region, Space Sci. Rev., 1983, vol. 34, no. 4, pp. 397–411.

    Article  ADS  Google Scholar 

  2. Danilov, A.D., Rodevich, A.Yu., and Smirnova, N.V., Parametric model of the D region taking into account meteorological effects, Geomagn. Aeron., 1991, vol. 31, no. 5, pp. 881–885.

    ADS  Google Scholar 

  3. Huo, X.L., Yuan, Y.B., Ou, J.K., Zhang, K.F., and Bailey, G.J., Monitoring the global-scale winter anomaly of total electron contents using GPS data, Earth Planets Space, 2009, vol. 61, no. 8, pp. 1019–1024.

    Article  ADS  Google Scholar 

  4. Pavlov, A.V., Pavlova, N.M., and Makarenko, S.F., A statistical study of the mid-latitude N m F2 winter anomaly, Adv. Space Res., 2010, vol. 45, no. 3, pp. 374–385.

    Article  ADS  Google Scholar 

  5. Mikhailov, A.V. and Perrone, L., On the mechanism of seasonal and solar cycle N m F2 variations: A quantitative estimate of the main parameters contribution using incoherent scatter radar observations, J. Geophys. Res., 2011, vol. 116, A03319. https://doi.org/10.1029/2010JA016122

    Article  ADS  Google Scholar 

  6. Jakowski, N. and Förster, M., About the nature of the night-time winter anomaly effect (NWA) in the F-region of the ionosphere, Planet. Space Sci., 1995, vol. 43, no. 5, pp. 603–612.

    Article  ADS  Google Scholar 

  7. Jakowski, N., Hoque, M.M., Kriegel, M., and Patidar, V., The persistence of the NWA effect during the low solar activity period 2007–2009, J. Geophys. Res.: Space, 2015, vol. 120, pp. 9148–9160. https://doi.org/10.1002/2015JA021600

    Article  ADS  Google Scholar 

  8. Deminov, M.G. and Deminova, G.F., Winter anomaly of the E layer critical frequency in the nighttime auroral zone, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 5, pp. 584–590.

  9. Deminov, M.G. and Deminova, G.F., Winter anomaly in the critical frequency of the E ayer in the nighttime polar cap, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 1, pp. 62–69.

  10. Newell, P.T., Meng, C.-I., and Lyons, K.M., Suppression of discrete aurorae by sunlight, Nature, 1996, vol. 381, no. 6585, pp. 766–767.

    Article  ADS  Google Scholar 

  11. Newell, P.T., Greenwald, R.A., and Ruohoniemi, J.M., The role of the ionosphere in aurora and space weather, Rev. Geophys., 2001, vol. 39, no. 2, pp. 137–149.

    Article  ADS  Google Scholar 

  12. Cliver, E.W., Kamide, Y., and Ling, A.G., The semiannual variation of geomagnetic activity: Phases and profiles for 130 years of aa data, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, no. 1, pp. 47–53.

    Article  ADS  Google Scholar 

  13. Zhang, Y. and Paxton, L.J., An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1231–1242.

    Article  ADS  Google Scholar 

  14. Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.

  15. Badin, V.I., Deminov, M.G., Deminov, R.G., and Shubin, V.N., E layer critical frequency median model for auroral region, Soln.-Zemnaya Fiz., 2013, no. 22, pp. 24–26.

  16. Zhang, Y., Paxton, L.J., Bilitza, D., and Doe, R., Near real-time assimilation in IRI of auroral peak E-region density and equatorward boundary, Adv. Space Res., 2010, vol. 46, pp. 1055–1063.

    Article  ADS  Google Scholar 

  17. Bilitza, D., The International Reference Ionosphere—status 2013, Adv. Space Res., 2015, vol. 55, no. 8, pp. 1914–1927.

    Article  ADS  Google Scholar 

  18. Nava, B., Coisson, P., and Radicella, S.M., A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, no. 15, pp. 1856–1862.

    Article  ADS  Google Scholar 

  19. Titheridge, J.E., Re-modeling the ionospheric E region, Kleinheubacher Ber., 1996, vol. 39, pp. 687–696.

    Google Scholar 

  20. Richards, P.G., Woods, T.N., and Peterson, W.K., HEUVAC: A new high resolution solar EUV proxy model, Adv. Space Res., 2006, vol. 37, no. 2, pp. 315–322.

    Article  ADS  Google Scholar 

  21. Ramachandran, K.M. and Tsokos, C.P., Mathematical Statistics with Applications, Oxford: Elsevier, 2009.

    MATH  Google Scholar 

  22. Newell, P.T., Sotirelis, T., and Wing, S., Seasonal variations in diffuse, monoenergetic, and broadband aurora, J. Geophys. Res., 2010, vol. 115, A03216. https://doi.org/10.1029/2009JA014805

    ADS  Google Scholar 

  23. Lions, L.R. and Williams, D.J., Quantitative Aspects of Magnetospheric Physics, Dordrecht: D. Reidel, 1984; Moscow: Mir, 1987.

  24. Johnson, M.T. and Wygant, J.R., The correlation of plasma density distributions over 5000 km with solar illumination of the ionosphere: Solar cycle and zenith angle observations, Geophys. Res. Lett., 2003, vol. 30, no. 24, 2260. https://doi.org/10.1029/2003GL018175

    ADS  Google Scholar 

  25. Ohtani, S., Wing, S., Ueno, G., and Higuchi, T., Dependence of premidnight field-aligned currents and particle precipitation on solar illumination, J. Geophys. Res., 2009, vol. 114, A12205. https://doi.org/10.1029/JA014115

    Article  ADS  Google Scholar 

  26. Cattell, C., Dombeck, J., and Hanson, L., Solar cycle effects on parallel electric field acceleration of auroral electron beams, J. Geophys. Res.: Space, 2013, vol. 118, pp. 5673–5680. https://doi.org/10.1002/jgra.50546

    Article  ADS  Google Scholar 

  27. Mursula, K., Tanskanen, E., and Love, J.J., Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry, Geophys. Res. Lett., 2011, vol. 38, L06104. https://doi.org/10.1029/2011GL046751

    Article  ADS  Google Scholar 

  28. Holt, J.M., Zhang, S.-R., and Buonsanto, M.J., Regional and local ionospheric models based on Millstone Hill incoherent scatter radar data, Geophys. Res. Lett., 2002, vol. 29, no. 8, https://doi.org/10.1029/2002GL014678

  29. Zhang, S.-R., Holt, J.M., van Eyken, A.P., et al., Ionospheric local model and climatology from long-term databases of multiple incoherent scatter radars, Geophys. Res. Lett., 2005, vol. 32, L20102. https://doi.org/10.1029/2005GL023603

    Article  ADS  Google Scholar 

  30. Zhang, S.-R., Holt, J.M., Bilitza, D.K., et al., Multiple-site comparisons between models of incoherent scatter radar and IRI, Adv. Space Res., 2007, vol. 39, pp. 910–917.

    Article  ADS  Google Scholar 

  31. Mertens, C.J., Xu, X., Bilitza, D., et al., Empirical STORM-E model: I. Theoretical and observational basis, Adv. Space Res., 2013, vol. 51, pp. 554–574.

    Article  ADS  Google Scholar 

  32. Mertens, C.J., Xu, X., Bilitza, D., et al., Empirical STORM-E model: II. Geomagnetic corrections to nighttime ionospheric E-region electron densities, Adv. Space Res., 2013, vol. 51, pp. 575–598.

    Article  ADS  Google Scholar 

  33. Bessarab, F.S., Korenkov, Y.N., Klimenko, V.V., Klimenko, M.V., and Zhang, Y., E-region ionospheric storm on May 1–3, 2010: GSM TIP model representation and suggestions for IRI improvement, Adv. Space Res., 2015, vol. 55, pp. 2124–2130.

    Article  ADS  Google Scholar 

  34. Kirkwood, S. and Nilsson, H., High-latitude sporadic-E and other thin layers—the role of magnetospheric electric fields, Space Sci. Rev., 2000, vol. 91, nos. 3–4, pp. 579–613.

    Article  ADS  Google Scholar 

  35. Zhang, Y., Wu, J., Guo, L., Hu, Y., Zhao, H., and Xu, T., Influence of solar and geomagnetic activity on sporadic-E layer over low, mid and high latitude stations, Adv. Space Res., 2015, vol. 55, pp. 1366–1371.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The data on critical frequencies foE of the Tromso digital ionospheric station and on indices of solar and geomagnetic activity were taken from the sites of Space Physics Interactive Data Resource (SPIDR, http://spidr.ionosonde.net/spidr), the World Data Center for Solar-Terrestrial Physics, Chilton (http://www.ukssdc.ac.uk/wdcc1/), and World Data Center for Geomagnetism, Kyoto (http://wdc.kugi. kyoto-u.ac.jp/). Calculations by the ISRIM were performed at the site (http://madrigal.haystack.mit. edu/models). Calculations by the Storm-E model were performed with the help of the subprogram presented in the IRI model at the site (http://irimodel. org/). The work was partly supported by the Russian Foundation for Basic Research (project no. 17-05-00427) and by Program 28 of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Deminov.

Additional information

Translated by A. Danilov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deminov, M.G., Deminova, G.F. Winter Anomaly in the Critical Frequency of the Nighttime Polar Ionosphere’s E Layer. Cosmic Res 57, 29–35 (2019). https://doi.org/10.1134/S0010952519010027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952519010027

Navigation