Skip to main content
Log in

Modeling of Magnetic Dipolarizations and Turbulence in Earth’s Magnetotail as Factors of Plasma Acceleration and Transfer

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The paper is devoted to studying processes of plasma particle acceleration in the process of magnetic dipolarizations in a current sheet of Earth’s magnetotail. A numerical model is constructed that allows evaluation of particle acceleration in three possible scenarios: (A) Proper dipolarization; (B) Passage of multiple dipolarization fronts; (C) Passage of fronts followed by high-frequency electromagnetic oscillations. The energy spectra of three types of accelerated particles are obtained: hydrogen H+ and oxygen O+ ions and electrons e. It is shown that, at different time scales, predominant acceleration of various particle populations occurs in scenarios (A)–(C). Oxygen ions are accelerated most efficiently in single dipolarization process (A), protons (and, to some extent, electrons), in scenario (B), whereas scenario (C) is most efficient for acceleration of electrons. It is shown that accounting for high-frequency electromagnetic fluctuations, accompanying magnetic dipolarization, may explain the appearance of streams of particles with energies on the order of hundreds of keV in Earth’s magnetotail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sharma, A.S., Nakamura, R., Runov, A., et al., Transient and localized processes in the magnetotail: A review, Ann. Geophys., 2008, vol. 26, pp. 1–51.

    Article  Google Scholar 

  2. Retino, A., Nakamura, R., Vaivads, A., et al., Cluster observations of energetic electrons and electromagnetic fields within a reconnecting thin current sheet in the Earth’s magnetotail, J. Geophys. Res.: Space Phys., 2008, vol. 113, A12215.

  3. Yamada, M., Kulsrud, R., and Ji, H., Magnetic reconnection, Rev. Mod. Phys., 2010, vol. 82, pp. 603–664.

    Article  ADS  MATH  Google Scholar 

  4. Delcourt, D.C., Pedersen, A., and Sauvaud, J.A., Dynamics of single-particle orbits during substorm expansion phase, J. Geophys. Res., 1990, vol. 95, pp. 20853–20865.

    Article  ADS  Google Scholar 

  5. Birn, J., Artemyev, A.V., Baker, D.N., et al., Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 2012, vol. 173, pp. 49–102.

    Article  ADS  Google Scholar 

  6. Birn, J., Hesse, M., Nakamura, R., and Zaharia, S., Particle acceleration in dipolarization events, J. Geophys. Res., 2013, vol. 118, pp. 1960–1971.

    Article  Google Scholar 

  7. Ashour-Abdalla, M., Lapenta, G., Walker, R.J., et al., Multiscale study of electron energization during unsteady reconnection events, J. Geophys. Res., 2015, vol. 120, pp. 4784–4799.

    Article  Google Scholar 

  8. Grigorenko, E.E., Malykhin, A.Yu., Kronberg, E.A., et al., Acceleration of ions to suprathermal energies by turbulence in the plasmoid-like magnetic structures, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 6541–6558.

    Article  ADS  Google Scholar 

  9. Zelenyi, L.M., Artemyev, A.V., Malova, H.V., et al., Marginal stability of thin current sheets in the Earth’s magnetotail, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 325–333.

    Article  ADS  Google Scholar 

  10. Zelenyi, L.M., Malova, H.V., Artemyev, A.V., et al., Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration, Plasma Phys. Rep., 2011, vol. 37, pp. 118–160.

    Article  ADS  Google Scholar 

  11. Angelopoulos, V., Runov, A., Zhou, X.Z., et al., Electromagnetic energy conversion at reconnection fronts, Science, 2013, vol. 341, pp. 1478–1482.

    Article  ADS  Google Scholar 

  12. Artemyev, A.V., Lutsenko, V.N., and Petrukovich, A.A., Ion resonance acceleration by dipolarization fronts: Analytic theory and spacecraft observation, Ann. Geophys., 2012, vol. 30, pp. 317–324.

    Article  ADS  Google Scholar 

  13. Lui, A.T.Y., Evidence for two types of dipolarization in the Earth’s magnetotail, J. Atmos. Sol.-Terr. Phys., 2014, vol. 115, pp. 17–24.

    Article  ADS  Google Scholar 

  14. Grigorenko, E.E., Malykhin, A.Yu., Kronberg, E.A., et al., Acceleration of ions to suprathermal energies by turbulence in the plasmoid-like magnetic structures, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 6541–6558.

    Article  ADS  Google Scholar 

  15. Kronberg, E.A., Grigorenko, E.E., Turner, D.L., et al., Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event, J. Geophys. Res., 2017, vol. 122, pp. 3055–3072.

    Article  Google Scholar 

  16. Liang, H., Lapenta, G., Walker, R.J., et al., Oxygen acceleration in magnetotail reconnection, J. Geophys. Res., 2017, vol. 122, pp. 618–639.

    Article  Google Scholar 

  17. Zhou, X.Z., Angelopoulos, V., Sergeev, V.A., et al., Accelerated ions ahead of earthward propagating dipolarization fronts, J. Geophys. Res., 2010, vol. 115, A00I03.

    Google Scholar 

  18. Ashour-Abdalla, M., Lapenta, G., Walker, R.J., et al., Multiscale study of electron energization during unsteady reconnection events, J. Geophys. Res., 2015, vol. 120, pp. 4784–4799.

    Article  Google Scholar 

  19. Baker, D.N., Fritz, T.A., McPherron, R.L., et al., Magnetotail energy storage and release during the CDAW 6 substorm analysis intervals, J. Geophys. Res., 1985, vol. 90, pp. 1205–1216.

    Article  ADS  Google Scholar 

  20. Grigorenko, E.E., Zelenyi, L.M., Dolgonosov, M.S., et al., Non-adiabatic ion acceleration in the Earth magnetotail and its various manifestations in the plasma sheet boundary layer, Space Sci. Rev., 2011, vol. 164, pp. 133–181.

    Article  ADS  Google Scholar 

  21. Birn, J., Artemyev, A.V., Baker, D.N., et al., Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 2012, vol. 173, pp. 49–102.

    Article  ADS  Google Scholar 

  22. Lui, A.T.Y., Evidence for two types of dipolarization in the Earth’s magnetotail, J. Atmos. Sol.-Terr. Phys., 2014, vol. 115, pp. 17–24.

    Article  ADS  Google Scholar 

  23. Nakamura, R., Baumjohann, W., Fujimoto, M., et al., Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field, J. Geophys. Res.: Space Phys., 2008, vol. 113, A07S16.

  24. Galeev, A.A., The mechanism of magnetosphere substorms, Sov. Phys. Usp., 1979, vol. 22, pp. 196–197.

    Article  ADS  Google Scholar 

  25. Zelenyi, L.M., Lominadze, J.G., and Taktakishvili, A.L., Generation of the energetic proton and electron bursts in planetary magnetotails, J. Geophys. Res., 1990, vol. 95, pp. 3883–3891.

    Article  ADS  Google Scholar 

  26. Runov, A., Angelopoulos, V., Sergeev, V.A., et al., Global properties of magnetotail current sheet flapping: THEMIS perspectives, Ann. Geophys., 2009, vol. 27, pp. 319–328.

    Article  ADS  Google Scholar 

  27. Runov, A., Angelopoulos, V., Zhou, X.Z., et al., THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet, J. Geophys. Res., 2011, vol. 116, A05216.

    Article  ADS  Google Scholar 

  28. Yao, Z., Fazakerley, A.N., Varsani, A., et al., Substructures within a dipolarization front revealed by high-temporal resolution cluster observations, J. Geophys. Res., 2016, vol. 121, pp. 5185–5202.

    Article  Google Scholar 

  29. Nakamura, R., Baumjohann, W., Klecker, B., et al., Motion of the dipolarization front during a flow burst event observed by cluster, Geophys. Res. Lett., 2002, vol. 29, id 1942.

  30. Sergeev, V., Angelopoulos, V., Apatenkov, S., et al., Kinetic structure of the sharp injection/dipolarization front in the flow-braking region, Geophys. Res. Lett., 2009, vol. 36, L21105.

    Article  ADS  Google Scholar 

  31. Angelopoulos, V., Baumjohann, W., Kennel, C.F., et al., Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 1992, vol. 97, pp. 4027–4039.

    Article  ADS  Google Scholar 

  32. Sergeev, V., Angelopoulos, V., Kubyshkina, M., et al., Substorm growth and expansion onset as observed with ideal ground-spacecraft THEMIS coverage, J. Geophys. Res., 2011, vol. 116, A00I26.

    Article  Google Scholar 

  33. Runov, A., Angelopoulos, V., Sitnov, M., et al., Dipolarization fronts in the magnetotail plasma sheet, Planet. Space Sci., 2011, vol. 59, pp. 517–525.

    Article  ADS  Google Scholar 

  34. Fu, H.S., Khotyaintsev, Y.V., Andre, M., et al., Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts, Geophys. Res. Lett., 2011, vol. 38, L16104.

    ADS  Google Scholar 

  35. Hamrin, M., Norqvist, P., Karlsson, T., et al., The evolution of flux pileup regions in the plasma sheet: Cluster observations, J. Geophys. Res., 2013, vol. 118, pp. 6279–6290.

    Article  Google Scholar 

  36. Slavin, J.A., Owen, C.J., Dunlop, M.W., et al., Cluster four spacecraft measurements of small traveling compression regions in the near-tail, Geophys. Res. Lett., 2003, vol. 30, no. 23, id 2208.

  37. Sergeev, V.A., Elphic, R.C., Mozer, F.S., et al., A two satellite study of nightside flux transfer events in the plasma sheet, Planet. Space Sci., 1992, vol. 40, pp. 1551–1572.

    Article  ADS  Google Scholar 

  38. Heyn, M.F. and Semenov, V.S., Rapid reconnection in compressible plasma, J. Plasma Phys., 1996, vol. 3, pp. 2725–2741.

    Article  MathSciNet  Google Scholar 

  39. Semenov, V.S., Penz, T., Ivanova, V.V., et al., Reconstruction of the reconnection rate from cluster measurements: first results, J. Geophys. Res., 2005, vol. 110, A11217.

    Article  ADS  Google Scholar 

  40. Longcope, D.W. and Priest, E.R., Fast magnetosonic waves launched by transient, current sheet reconnection, J. Plasma Phys., 2007, vol. 14, id 122905.

  41. Sitnov, M.I., Swisdak, M., and Divin, A.V., Dipolarization fronts as a signature of transient reconnection in the magnetotail, J. Geophys. Res., 2009, vol. 114, A04202.

    Article  ADS  Google Scholar 

  42. Sitnov, M.I. and Swisdak, M., Onset of collisionless magnetic reconnection in two-dimensional current sheets and formation of dipolarization fronts, J. Geophys. Res., 2011, vol. 116, A12216.

    Article  ADS  Google Scholar 

  43. Ono, Y., Nosé, M., Christon, S.P., et al., The role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization, J. Geophys. Res., 2009, vol. 114, A05209.

    Article  ADS  Google Scholar 

  44. El-Alaoui, M., Richard, R.L., Ashour-Abdalla, M., et al., Dipolarization and turbulence in the plasma sheet during a substorm: THEMIS observations and global MHD simulations, J. Geophys. Res., 2013, vol. 118, pp. 7752–7761.

    Article  Google Scholar 

  45. Grigorenko, E.E., Kronberg, E.A., Daly, P.W., et al., Origin of low proton-to-electron temperature ratio in the Earth’s plasma sheet, J. Geophys. Res., 2016, vol. 121, pp. 9985–10004.

    Article  Google Scholar 

  46. Grigorenko, E.E., Kronberg, E.A., and Daly, P.W., Heating and acceleration of charged particles during magnetic dipolarizations, Cosmic Res., 2017, vol. 55, no. 1, pp. 57–66.

    Article  ADS  Google Scholar 

  47. Ipavich, F.M., Galvin, A.B., Gloeckler, G., et al., Energetic (greater than 100 keV) O+ ions in the plasma sheet, Geophys. Res. Lett., 1984, vol. 11, pp. 504–507.

    Article  ADS  Google Scholar 

  48. Nosé, M., Ohtani, S., and Lui, A.T.Y., Change of energetic ion composition in the plasma sheet during substorms, J. Geophys. Res., 2000, vol. 105, pp. 23277–23286.

    Article  ADS  Google Scholar 

  49. Cattell, C.A. and Mozer, F.S., Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times, Geophys. Res. Lett., 1982, vol. 9, pp. 1041–1044.

    Article  ADS  Google Scholar 

  50. Hoshino, M., Nishida, A., Yamamoto, T., et al., Turbulent magnetic field in the distant magnetotail: Bottom-up process of plasmoid formation, Geophys. Res. Lett., 1994, vol. 21, pp. 2935–2938.

    Article  ADS  Google Scholar 

  51. Bauer, T.M., Baumjohann, W., Treumann, R.A., et al., Low-frequency waves in the near-Earth plasma sheet, J. Geophys. Res., 1995, vol. 100, pp. 9605–9618.

    Article  ADS  Google Scholar 

  52. Delcourt, D.C., Pedersen, A., and Sauvaud, J.A., Dynamics of single-particle orbits during substorm expansion phase, J. Geophys. Res., 1990, vol. 95, pp. 20853–20865.

    Article  ADS  Google Scholar 

  53. Veltri, P., Zimbardo, G., Taktakishvili, A.L., et al., Effect of magnetic turbulence on the ion dynamics in the distant magnetotail, J. Geophys. Res., 1998, vol. 103, pp. 14897–14916.

    Article  ADS  Google Scholar 

  54. Delcourt, D.C., Particle acceleration by inductive electric fields in the inner magnetosphere, J. Atmos. Sol-Terr. Phys., 2002, vol. 64, pp. 551–559.

    Article  ADS  Google Scholar 

  55. Greco, A., Artemyev, A., and Zimbardo, G., Heavy ion acceleration at dipolarization fronts in planetary magnetotails, Geophys. Res. Lett., 2015, vol. 42, pp. 8280–8287.

    Article  ADS  Google Scholar 

  56. Perri, S., Lepreti, F., Carbone, V., et al., Dynamical properties of test particles in stochastic electromagnetic fields, Commun. Nonlinear Sci. Numer. Simul., 2009, vol. 14, pp. 2347–2352.

    Article  ADS  Google Scholar 

  57. Greco, A., Perri, S., Zimbardo, G., et al., Particle acceleration by stochastic fluctuations and dawn–dusk electric field in the Earth’s magnetotail, Adv. Space Res., 2009, vol. 44, pp. 528–533.

    Article  ADS  Google Scholar 

  58. Ukhorskiy, A.Y., Sitnov, M.I., Merkin, V.G., et al., Ion acceleration at dipolarization fronts in the inner magnetosphere, J. Geophys. Res., 2017, vol. 122, pp. 3040–3054.

    Google Scholar 

  59. Zhou, X.Z., Ge, Y.S., Angelopoulos, V., Runov, A., et al., Dipolarization fronts and associated auroral activities: 2. Acceleration of ions and their subsequent behavior, J. Geophys. Res., 2012, vol. 117, A10227.

    Article  ADS  Google Scholar 

  60. Birn, J., Thomsen, M.F., and Hesse, M., Electron acceleration in the dynamic magnetotail: Test particle orbits in three-dimensional magnetohydrodynamic simulation fields, J. Plasma Phys., 2004, vol. 11, pp. 1825–1833.

    Article  Google Scholar 

  61. Apatenkov, S.V., Sergeev, V.A., Kubyshkina, M.V., et al., Multi-spacecraft observation of plasma dipolarization/injection in the inner magnetosphere, Ann. Geophys., 2007, vol. 25, pp. 801–814.

    Article  ADS  Google Scholar 

  62. Hoshino, M., Electron surfing acceleration in magnetic reconnection, J. Geophys. Res.: Space Phys., 2005, vol. 110, A10215.

  63. Catapano, F., Zimbardo, G., Perri, S., et al., Proton and heavy ion acceleration by stochastic fluctuations in the Earth’s magnetotail, Ann. Geophys., 2016, vol. 34, pp. 917–926.

    Article  ADS  Google Scholar 

  64. Harris, E.G., On a plasma sheet separating regions of oppositely directed magnetic field, Nuovo Cimento A, 1962, vol. 23, pp. 115–121.

    Article  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Volkswagen Foundation grant Az 90 312; A.A. Petrukovich’s study was supported by the Russian Science Foundation, project no. 14-12-00824.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Parkhomenko or H. V. Malova.

Additional information

Translated by Yu. Preobrazhensky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkhomenko, E.I., Malova, H.V., Popov, V.Y. et al. Modeling of Magnetic Dipolarizations and Turbulence in Earth’s Magnetotail as Factors of Plasma Acceleration and Transfer. Cosmic Res 56, 453–461 (2018). https://doi.org/10.1134/S0010952518060084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952518060084

Keywords

Navigation