Cosmic Research

, Volume 56, Issue 2, pp 140–143 | Cite as

Active Vibration Isolation Devices with Inertial Servo Actuators

  • V. A. Melik-Shakhnazarov
  • V. I. Strelov
  • D. V. Sofiyanchuk
  • A. A. Tregubenko
Article
  • 4 Downloads

Abstract

The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2–2.5 times smaller than that of devices with support actuators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strelov, V.I., Zakharov, B.G., Sidorov, V.S., et al., Mathematical simulation and experimental investigations of vibrations and Marangoni convection influence on microhomogeneity of semiconductor crystals, Poverkhnost, 2005, no. 10, pp. 80–87.Google Scholar
  2. 2.
    Zemskov, V.S., Raukhman, M.R., Shalimov, V.P., et al., The influence of arrangement of growth setups onboard a spacecraft on microgravity conditions of experiments: An example of floating zone melting of InSb:Te onboard the Foton-3 satellite, Cosmic Res., 2004, vol. 42, no. 2, pp. 137–147.ADSCrossRefGoogle Scholar
  3. 3.
    Strelov, V.I., Kuranova, I.P., Zakharov, B.G., and Voloshin, A.E., Crystallization in space: Results and prospects, Crystallogr. Rep., 2014, vol. 59, no. 6, pp. 781–806.ADSCrossRefGoogle Scholar
  4. 4.
    Melik-Shakhnazarov, V.A., Strelov, V.I., Sofiyanchuk, D.V., and Bezbakh, I.Zh., New design of active vibroprotection devices, Tech. Phys. Lett., 2012, vol. 38, no. 3, pp. 283–285.ADSCrossRefGoogle Scholar
  5. 5.
    Melik-Shakhnazarov, V.A., Strelov, V.I., Sofiyanchuk, D.V., and Bezbakh, I.Zh., Electronic control circuits for new-generation active vibroprotective devices, Nauchn. Priborostr., 2012, vol. 22, no. 3, pp. 46–52.Google Scholar
  6. 6.
    Melik-Shakhnazarov, V.A., Strelov, V.I., Sofiyanchuk, D.V., and Bezbakh, I.Z., Active two-stage vibroprotective units, Instrum. Exp. Tech., 2013, vol. 56, no. 2, pp. 219–224.CrossRefGoogle Scholar
  7. 7.
    Melik-Shakhnazarov, V.A., Strelov, V.I., Sofiyanchuk, D.V., and Tregubenko, A.A., Transfer functions of electrodynamic transformers in control circuits of active vibration isolation facilities, Inzh. Fiz., 2017, no. 2, pp. 20–26.Google Scholar
  8. 8.
    Vakhitov, Ya.Sh., Teoreticheskie osnovy elektroakustiki i elektroakusticheskaya apparatura (Theoretical Bases of Electroacoustics and Electroacoustic Instrumentation), Moscow: Iskusstvo, 1980.Google Scholar
  9. 9.
    Voronov, A.A., Osnovy teorii avtomaticheskogo upravleniya (Fundamentals of Automatic Control Theory), vol. 2: Lineinye sistemy regulirovaniya odnoi velichiny (Linear Systems of Single Parameter Control), Moscow–Leningrad: Energiya, 1965.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Melik-Shakhnazarov
    • 1
    • 2
  • V. I. Strelov
    • 1
    • 2
  • D. V. Sofiyanchuk
    • 1
    • 2
  • A. A. Tregubenko
    • 1
    • 2
  1. 1.Institute of CrystallographyMoscowRussia
  2. 2.Crystallography and PhotonicsRussian Academy of SciencesMoscowRussia

Personalised recommendations