Advertisement

Cosmic Research

, Volume 56, Issue 1, pp 11–25 | Cite as

Comparison of the effects induced by the ordinary (O-mode) and extraordinary (X-mode) polarized powerful HF radio waves in the high-latitude ionospheric F region

  • N. F. BlagoveshchenskayaEmail author
  • T. D. Borisova
  • A. S. Kalishin
  • V. N. Kayatkin
  • T. K. Yeoman
  • I. Häggström
Article
  • 45 Downloads

Abstract

Using the results of coordinated experiments on the modification of the high-latitude ionosphere by powerful HF radio emission of the EISCAT/Heating facility, effects of the impact of powerful HF radio waves of the ordinary (O-mode) and extraordinary (Х-mode) polarization on the high-latitude ionospheric F region have been compared. During the experiments, a powerful HF radio wave was emitted in the magnetic zenith direction at frequencies within the 4.5–7.9 MHz range. The effective power of the emission was 150–650 MW. The behavior and characteristics of small-scale artificial ionospheric irregularities (SAIIs) during O- and X-heating at low and high frequencies are considered in detail. A principal difference has been found in the development of the Langmuir and ion–acoustic turbulence (intensified by the heating of the plasma and ion–acoustic lines in the spectrum of the EISCAT radar of incoherent scatter of radio waves) in the О- and Х-heating cycles after switching on the heating facility. It has been shown that, under the influence on the ionospheric plasma of a powerful HF radio wave of the Х-polarization, intense spectral components in the spectrum of the narrow-band artificial ionospheric radio emission (ARI) were registered at distances on the order of 1200 km from the heating facility.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robinson, T.R., The heating of the high latitude ionosphere by high power radio waves, Phys. Rep., 1989, vol. 179, pp. 79–209.ADSCrossRefGoogle Scholar
  2. 2.
    Gurevich, A.V., Nonlinear effects in the ionosphere, Phys.-Usp., 2007, vol. 50, no. 11, pp. 1091–1122.ADSCrossRefGoogle Scholar
  3. 3.
    Grach, S.M., Sergeev, E.N., Mishin, E.V., and Shindin, A.V., Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves, Phys.-Usp., 2016, vol. 59, no. 11, pp. 1091–1128.ADSCrossRefGoogle Scholar
  4. 4.
    Blagoveshchenskaya, N.F., Geofizicheskie effekty aktivnykh vozdeistvii v okolozemnom kosmicheskom prostranstve (Geophysical Effects of Active Influences in the Near-Earth Cosmic Space), St. Petersburg: Gidrometeoizdat, 2001.Google Scholar
  5. 5.
    Blagoveshchenskaya, N.F., Borisova, T.D., Kornienko, V.A., et al., Phenomena in the ionosphere–magnetosphere system induced by injection of powerful HF radio waves into nightside auroral ionosphere, Ann. Geophys., 2005, vol. 23, pp. 87–100.ADSCrossRefGoogle Scholar
  6. 6.
    Blagoveshchenskaya, N.F., Borisova, T.D., Kornienko, V.A., et al., Heater-induced phenomena in a coupled ionosphere–magnetosphere system, Adv. Space Res., 2006, vol. 38, pp. 2495–2502.ADSCrossRefGoogle Scholar
  7. 7.
    Blagoveshchenskaya, N.F., Borisova, T.D., Kornienko, V.A., et al., Ionospheric HF pump wave triggering of local auroral activation, J. Geophys. Res., 2001, vol. 106, pp. 29 071–29 089.ADSCrossRefGoogle Scholar
  8. 8.
    DuBois, D.F., Rose, H.A., Russell, D., et al., Excitation of strong Langmuir turbulence in plasmas near critical density: Application to HF heating of the ionosphere, J. Geophys. Res., 1990, vol. 95, pp. 21221–21272.ADSCrossRefGoogle Scholar
  9. 9.
    Kuo, S., Snyder, A., and Lee, M.C., Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP, Phys. Plasmas, 2014, vol. 21, 062902. doi 10.1063/1.4885642ADSCrossRefGoogle Scholar
  10. 10.
    Blagoveshchenskaya, N.F., Borisova, T.D., Yeoman, T.K., and Rietveld, M.T., The effects of modification of a high-latitude ionosphere by high-power HF radio waves. Part 1. Results of multi-instrument ground-based observations, Radiophys. Quantum Electron., 2010, vol. 53, nos. 9–10, pp. 512–531.ADSGoogle Scholar
  11. 11.
    Blagoveshchenskaya, N.F., Borisova, T.D., Yeoman, T., et al., Artificial field-aligned irregularities in the highlatitude F region of the ionosphere induced by an X-mode HF heater wave, Geophys. Res. Lett., 2011, vol. 38. doi 10.1029/2011GL046724Google Scholar
  12. 12.
    Blagoveshchenskaya, N.F., Borisova, T.D., Yeoman, T.K., et al., Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere, J. Atmos. Sol.-Terr. Phys., 2013, vols. 105–106, pp. 231–244.CrossRefGoogle Scholar
  13. 13.
    Blagoveshchenskaya, N.F., Borisova, T.D., Yeoman, T.K., et al., Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: Experimental results from multi-instrument diagnostics, J. Atmos. Sol.-Terr. Phys., 2015, vol. 135, pp. 50–63.ADSCrossRefGoogle Scholar
  14. 14.
    Blagoveshchenskaya, N.F., Borisova, T.D., Kosch, M., et al., Optical and ionospheric phenomena at EISCAT under continuous X-mode HF pumping, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 10 483–10 498.CrossRefGoogle Scholar
  15. 15.
    Blagoveshchenskaya, N.F., Borisova, T.D., Kalishin, A.S., et al., First observations of electron gyroharmonic effects under X-mode HF pumping the high latitude ionospheric F-region, J. Atmos. Sol.-Terr. Phys., 2017, vol. 155, pp. 36–49.ADSCrossRefGoogle Scholar
  16. 16.
    Rietveld, M.T., Senior, A., Markkanen, J., and Westman, A., New capabilities of the upgraded EISCAT high-power HF facility, Radio Sci., 2016, vol. 51, no. 9, pp. 1533–1546. doi 10.1002/2016RS006093ADSCrossRefGoogle Scholar
  17. 17.
    Rishbeth, H. and van Eyken, T., EISCAT: Early history and the first ten years of operation, J. Atmos. Sol.-Terr. Phys., 1993, vol. 55, pp. 525–542.ADSCrossRefGoogle Scholar
  18. 18.
    Lehtinen, M.S. and Huuskonen, A., General incoherent scatter analysis and GUISDAP, J. Atmos. Sol.-Terr. Phys., 1996, vol. 58, pp. 435–452.ADSCrossRefGoogle Scholar
  19. 19.
    Lester, M., Chapman, P.J., and Cowley, S.W.H., et al., Stereo CUTLASS: A new capability for the SuperDARN radars, Ann. Geophys., 2004, vol. 22, pp. 459–473.ADSCrossRefGoogle Scholar
  20. 20.
    Robinson, T.R., Stocker, A.J., Bond, G.E., et al., Oand X-mode heating effects observed simultaneously with the CUTLASS and EISCAT radars and low power HF diagnostic at Tromsø, Ann. Geophys., 1997, vol. 15, pp. 134–136.Google Scholar
  21. 21.
    Hedberg, Å., Derblom, H., Thidé, B., et al., Observations of HF backscatter associated with the heating experiment at Tromsø, Radio Sci., 1983, vol. 18, no. 6, pp. 840–850.ADSCrossRefGoogle Scholar
  22. 22.
    Grach, S.M. and Trakhtengerts, V.Yu., Parametric excitation of ionospheric irregularities extended along the magnetic field, Radiophys. Quantum Electron., 1975, vol. 18, no. 9, pp. 951–957.ADSCrossRefGoogle Scholar
  23. 23.
    Vas’kov, V.V. and Gurevich A.V., Nonlinear resonance instability of plasma in the reflection region of ordinary electromagnetic wave, Sov. Phys. JETF, 1975, vol. 42, 1975, 91–103.ADSGoogle Scholar
  24. 24.
    Gurevich, A.V., Nonlinear Phenomena in the Ionosphere, New York: Springer, 1978.CrossRefGoogle Scholar
  25. 25.
    Guzdar, P., Chaturvedi, P., Papadopoulos, K., and Ossakow, S., The thermal self-focusing instability near the critical surface in the high-latitude ionosphere, J. Geophys. Res., 1998, vol. 103, pp. 2231–2237.ADSCrossRefGoogle Scholar
  26. 26.
    Fejer, J.A., Ionospheric modification and parametric instabilities, Rev. Geophys.: Space Phys., 1979, vol. 17, no. 1, pp. 135–153.ADSCrossRefGoogle Scholar
  27. 27.
    Hagfors, T., Kofman, W., Kopka, H., et al., Observations of enhanced plasma lines by EISCAT during heating experiments, Radio Sci., 1983, vol. 18, pp. 861–866.ADSCrossRefGoogle Scholar
  28. 28.
    Stubbe, P., Kohl, H., and Rietveld, M.T., Langmuir turbulence and ionospheric modification, J. Geophys. Res., 1992, vol. 97, pp. 6285–6297.ADSCrossRefGoogle Scholar
  29. 29.
    Mishin, E., Hagfors, T., and Isham, B., A generation mechanism for topside enhanced incoherent backscatter during high frequency modification experiments in Tromsø, Geophys. Res. Lett., 2001, vol. 28, pp. 479–482.ADSCrossRefGoogle Scholar
  30. 30.
    Mishin, E., Watkins, B., Lehtinen, N., et al., Artificial ionospheric layers driven by high-frequency radiowaves: An assessment, J. Geophys. Res.: Space Phys., 2016, vol. 121. doi 10.1002/2015JA021823Google Scholar
  31. 31.
    Rietveld, M.T., Kosch, M.J., Blagoveshchenskaya, N.F., et al., Ionospheric electron heating, aurora and striations induced by powerful HF radio waves at high latitudes: Aspect angle dependence, J. Geophys. Res., 2003, vol. 108, no. A4, 1141. doi 101029/2002JA009543CrossRefGoogle Scholar
  32. 32.
    Borisova, T.D., Blagoveshchenskaya, N.F., Kalishin, A.S., et al., Phenomena in the high-latitude ionospheric F region induced by a HF heater wave at frequencies near the fourth electron gyroharmonic, Radiophys. Quantum Electron., 2014, vol. 57, no. 1, pp. 1–19.ADSCrossRefGoogle Scholar
  33. 33.
    Borisova, T.D., Blagoveshchenskaya, N.F., Kalishin, A.S., et al., Modification of the high-latitude ionospheric F region by high-power HF radio waves at frequencies near the fifth and sixth electron gyroharmonics, Radiophys. Quantum Electron., 2015, vol. 58, no. 8, pp. 561–585.ADSCrossRefGoogle Scholar
  34. 34.
    Carlson, H.C., Wickwar, V.B., and Mantas, G.P., Observations of fluxes of suprathermal electrons accelerated by HF excited instabilities, J. Atmos. Terr. Phys., 1982, vol. 44, pp. 1089–1100.ADSCrossRefGoogle Scholar
  35. 35.
    Norin, L., Leyser, T.B., Nordblad, E., et al., Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere, Phys. Rev. Lett., 2009, vol. 102, 065003. doi 10.1103/PhysRevLett.102.065003ADSCrossRefGoogle Scholar
  36. 36.
    Bernhardt, P.A., Selcher, C.A., Lehmberg, R.H., et al., Stimulated Brillouin Scatter in a magnetized ionospheric plasma, Phys. Rev. Lett., 2010, vol. 104, 165004. doi 10.1103/PhysRevLett.104.165004ADSCrossRefGoogle Scholar
  37. 37.
    Bernhardt, P.A., Selcher, C.A., and Kowtha, S., Electron and ion Bernstein waves excited in the ionosphere by high power EM waves at the second harmonic of the electron cyclotron frequency, Geophys. Res. Lett., 2011, vol. 38. doi 10.1029/2011GL049390Google Scholar
  38. 38.
    Samimi, A., Scales, W.A., Fu, H., et al., Ion gyroharmonic structures in stimulated radiation during second electron gyroharmonic heating: 1. Theory, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 502–514. doi 10.1029/2012JA018146ADSCrossRefGoogle Scholar
  39. 39.
    Sharma, R.P., Kumar, A., Kumar, R., and Tripathi, Y.K., Excitation of electron Bernstein and ion Bernstein waves by extraordinary electromagnetic pump: Kinetic theory, Phys. Plasmas, 1994, vol. 1, no. 3, pp. 522–527. doi 10.1063/1.870796ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. F. Blagoveshchenskaya
    • 1
    Email author
  • T. D. Borisova
    • 1
  • A. S. Kalishin
    • 1
  • V. N. Kayatkin
    • 1
  • T. K. Yeoman
    • 2
  • I. Häggström
    • 3
  1. 1.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  2. 2.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  3. 3.EISCAT Scientific AssociationKirunaSweden

Personalised recommendations