Skip to main content
Log in

Some problems of identifying types of large-scale solar wind and their role in the physics of the magnetosphere

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This paper discusses the errors in analyzing solar-terrestrial relationships, which result from either disregarding the types of interplanetary drivers in studying the magnetosphere response on their effect or from the incorrect identification of the type of these drivers. In particular, it has been shown that the absence of selection between the Sheath and ICME (the study of so-called CME-induced storms, i.e., magnetic storms generated by CME) leads to errors in the studies of interplanetary conditions of magnetic storm generation, because the statistical analysis has shown that, in the Sheath + ICME sequences, the largest number of storm onsets fell on the Sheath, and the largest number of storms maxima fell at the end of the Sheath and the beginning of the ICME. That is, the situation is observed most frequently when at least the larger part of the main phase of storm generation falls on the Sheath and, in reality, Sheath-induced storms are observed. In addition, we consider several cases in which magnetic storms were generated by corotating interaction regions, whereas the authors attribute them to CME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 1961, vol. 6, no. 2, pp. 47–48.

    Article  ADS  Google Scholar 

  2. Fairfield, D.H. and Cahill, L.J., The transition region magnetic field and polar magnetic disturbances, J. Geophys. Res., 1966, vol. 71, pp. 155–169.

    Article  ADS  Google Scholar 

  3. Rostoker, G. and Falthammar, C.-G., Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth’s surface, J. Geophys. Res., 1967, vol. 72, no. 23, pp. 5853–5863.

    Article  ADS  Google Scholar 

  4. Russell, C.T., McPherron, R.L., and Burton, R.K., On the cause of magnetic storms, J. Geophys. Res., 1974, vol. 79, pp. 1105–1109.

    Article  ADS  Google Scholar 

  5. Burton, R.K., McPherron, R.L., and Russell, C.T., An empirical relationship between interplanetary conditions and D st, J. Geophys. Res., 1975, vol. 80, pp. 4204–4214.

    Article  ADS  Google Scholar 

  6. Akasofu, S.-I., Energy coupling between the solar wind and the magnetosphere, Space Sci. Rev., 1981, vol. 111, A07S08. doi 10.1029/2005JA011447

    Google Scholar 

  7. Eselevich, V.G. and Fainshtein, V.G., An investigation of the relationship between the magnetic storm Dst indexes and different types of solar wind streams, Ann. Geophys., 1993, vol. 11, no. 8, pp. 678–684.

    ADS  Google Scholar 

  8. Huttunen, K.E.J., Koskinen, H.E.J., and Schwenn, R., Variability of magnetospheric storms driven by different solar wind perturbations, J. Geophys. Res., 2002, vol. 107, no. A7. doi 10.1029/2001JA900171

    Google Scholar 

  9. Huttunen, K.E.J. and Koskinen, H.E.J., Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity, Ann. Geophys., 2004, vol. 22, pp. 1729–1738.

    Article  ADS  Google Scholar 

  10. Huttunen, K.E.J., Koskinen, H.E.J., Karinen, A., and Mursula, K., Asymmetric development of magnetospheric storms during magnetic clouds and sheath regions, Geophys. Res. Lett., 2006, vol. 33, no. 6, L06107. doi 10.1029/2005GL024894

    Article  ADS  Google Scholar 

  11. Borovsky, J.E. and Denton, M.H., Differences between CME-driven storms and CIR-driven storms, J. Geophys. Res., 2006, vol. 28, pp. 121–190.

    Google Scholar 

  12. Pulkkinen, T.I., Partamies, N., Huttunen, K.E.J., Reeves, G.D., and Koskinen, H.E.J., Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions, Geophys. Res. Lett., 2007, vol. 34, L02105. doi 10.1029/2006GL027775

    ADS  Google Scholar 

  13. Yermolaev, Yu.I., Yermolaev, M.Yu., Nikolaeva, N.S., and Lodkina, L.G., Interplanetary conditions for CIRinduced and MC induced geomagnetic storms, Bulg. J. Phys., 2007, vol. 34, pp. 128–135.

    Google Scholar 

  14. Plotnikov, I.Y. and Barkova, E.S., Nonlinear dependence of Dst and AE indices on the electric field of magnetic clouds, Adv. Space Res., 2007, vol. 40, pp. 1858–1862.

    Article  ADS  Google Scholar 

  15. Longden, N., Denton, M.H., and Honary, F., Particle precipitation during ICME-driven and CIR-driven geomagnetic storms, J. Geophys. Res., 2008, vol. 113, A06205. doi 10.1029/2007JA012752

    Article  ADS  Google Scholar 

  16. Turner, N.E., Cramer, W.D., Earles, S.K., and Emery, B.A., Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmos. Sol.- Terr. Phys., 2009, vol. 71, pp. 1023–1031.

    Article  ADS  Google Scholar 

  17. Guo, J., Feng, X., Emery, B.A., et al., Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions, J. Geophys. Res., 2011, vol. 116, A05106. doi 10.1029/2011JA016490

    Google Scholar 

  18. Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Modeling the time behavior of the Dst index during the main phase of magnetic storms generated by various types of solar wind, Cosmic Res., 2013, vol. 51, no. 6, pp. 401–412.

    Article  ADS  Google Scholar 

  19. Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Dependence of geomagnetic activity during magnetic storms on solar-wind parameters for different types of streams: 4. Simulation for magnetic clouds, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 2, pp. 152–161.

    Article  ADS  Google Scholar 

  20. Nikolaeva, N., Yermolaev, Y., and Lodkina, I., Predicted dependence of the cross polar cap potential saturation on the type of solar wind stream, Adv. Space Res., 2015, vol. 56, pp. 1366–1373.

    Article  ADS  Google Scholar 

  21. Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Modeling of the corrected Dst* index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Res., 2015, vol. 53, no. 2, pp. 119–127.

    Article  ADS  Google Scholar 

  22. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Relative occurrence rate and geoeffectiveness of large-scale types of the solar wind Cosmic Res., 2010, vol. 48, no. 1, pp. 1–30.

    Article  ADS  Google Scholar 

  23. Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Y., Specific interplanetary conditions for CIR-induced, sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 2010, vol. 28, pp. 2177–2186.

    Article  ADS  Google Scholar 

  24. Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Y., Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms, J. Geophys. Res., 2012, vol. 117, A00L07. doi 10.1029/2011JA017139

    Google Scholar 

  25. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Y., Influence of the interplanetary driver type on the durations of the main and recovery phases of magnetic storms, J. Geophys. Res., 2014, vol. 119, no. 10, pp. 8126–8136. doi 10.1002/2014JA019826

    Article  Google Scholar 

  26. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Y., Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res., 2015, vol. 120, no. 9, pp. 7094–7106. doi 10.1002/2015JA021274

    Article  Google Scholar 

  27. Borovsky, J.E., Cayton, T.E., Denton, M.H., Belian, R.D., Christensen, R.A., and Ingraham, J.C., The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during highspeed stream-driven storms, J. Geophys. Res., 2016, vol. 121, no. 6, pp. 5449–5488. doi 10.1002/2016JA022520

    Article  Google Scholar 

  28. Lockwood, M., Owens, M.J., Barnard, L.A., et al., On the origins and timescales of geoeffective IMF, Space Weather, 2016, vol. 14, pp. 406–432. doi 10.1002/2016SW001375

    Article  ADS  Google Scholar 

  29. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.

    Article  ADS  Google Scholar 

  30. King, J.H. and Papitashvili, N.E., Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data, J. Geophys. Res., 2004, vol. 110, no. A2, A02209. doi 10.1029/2004JA010804

    Google Scholar 

  31. Thatcher, L.J. and Muller, H.-R., Statistical investigation of hourly OMNI solar wind data, J. Geophys. Res., 2011, vol. 116, A12107. doi 10.1029/2011JA017027

    Article  ADS  Google Scholar 

  32. Mitsakou, E. and Moussas, X., Statistical study of ICMES and their sheaths during solar cycle 23 (1996–2008), Sol. Phys., 2014, vol. 289, pp. 3137–3157. doi 10.1007/s11207-014-0505-y

    Article  ADS  Google Scholar 

  33. Richardson, I.G. and Cane, H.V., Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011), J. Space Weather Space Clim., 2012, vol. 2, A02. doi 10.1051/swsc/2012003

    Google Scholar 

  34. Keesee, A.M., Elfritz, J.G., Fok, M.-C., et al., Superposed epoch analyses of ion temperatures during CMEand CIR/HSS-driven storms, J. Atmos. Sol.-Terr. Phys., 2013, vol. 115, pp. 67–78. doi 10.1016/j.jastp.2013.08.009

    ADS  Google Scholar 

  35. Potapov, A.S., ULF wave activity in high-speed streams of the solar wind: Impact on the magnetosphere, J. Geophys. Res., 2013, vol. 118, pp. 6465–6477. doi 10.1002/2013JA019119

    Article  Google Scholar 

  36. Yuan, C.J. and Zong, Q.G., The double-belt outer radiation belt during CME- and CIR-driven geomagnetic storms, J. Geophys. Res., 2013, vol. 118, pp. 6291–6301. 10.1002/jgra.50564

    Article  Google Scholar 

  37. Cramer, W.D., Turner, N.E., Fok, M.-C., and Buzulukova, N.Y., Effects of different geomagnetic storm drivers on the ring current: CRCM results, J. Geophys. Res., 2013, vol. 118, pp. 1062–1073. doi 10.1002/jgra.50138

    Article  Google Scholar 

  38. Kim, K.-C., Lee, D.-Y., and Shprits, Y., Dependence of plasmaspheric hiss on solar wind parameters and geomagnetic activity and modeling of its global distribution, J. Geophys. Res., 2015, vol. 120, pp. 1153–1167. doi 10.1002/2014JA020687

    Article  Google Scholar 

  39. Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Y., Large-scale solar wind structures: Occurrence rate and geoeffectiveness, AIP Conf. Proc., 2010, vol. 1216, pp. 648–651.

    Article  ADS  Google Scholar 

  40. Hutchinson, J.A., Wright, D.M., and Milan, S.E., Geomagnetic storms over the last solar cycle: A superposed epoch analysis, J. Geophys. Res., 2011, vol. 116, A09211. doi 10.1029/2011JA016463

    Article  ADS  Google Scholar 

  41. Zolotukhina, N., Polekh, N., Kurkin, V., and Romanova, E., Ionospheric effects of solar flares and their associated particle ejections in March 2012, Adv. Space Res., 2015, vol. 55, pp. 2851–2862.

    Article  ADS  Google Scholar 

  42. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Yu., Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis. 2. CIR vs Sheath and MC vs Ejecta comparisons. 2016. http://arxiv.org/abs/1602.08899.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. I. Yermolaev.

Additional information

Original Russian Text © Y.I. Yermolaev, I.G. Lodkina, N.S. Nikolaeva, M.Y. Yermolaev, M.O. Riazantseva, 2017, published in Kosmicheskie Issledovaniya, 2017, Vol. 55, No. 3, pp. 189–200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S. et al. Some problems of identifying types of large-scale solar wind and their role in the physics of the magnetosphere. Cosmic Res 55, 178–189 (2017). https://doi.org/10.1134/S0010952517030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952517030029

Navigation