Skip to main content
Log in

Observation of Terrestrial gamma-ray flashes in the RELEC space experiment on the Vernov satellite

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The RELEС scientific payload of the Vernov satellite launched on July 8, 2014 includes the DRGE spectrometer of gamma-rays and electrons. This instrument comprises a set of scintillator phoswich-detectors, including four identical X-ray and gamma-ray detector with an energy range of 10 kev to 3 MeV with a total area of ~500 cm2 directed to the atmosphere, as well as an electron spectrometer containing three mutually orthogonal detector units with a geometric factor of ~2 cm2 sr. The aim of a space experiment with the DRGE instrument is the study of fast phenomena, in particular Terrestrial gamma-ray flashes (TGF) and magnetospheric electron precipitation. In this regard, the instrument provides the transmission of both monitoring data with a time resolution of 1 s, and data in the event-by-event mode, with a recording of the time of detection of each gamma quantum or electron to an accuracy of ~15 μs. This makes it possible to not only conduct a detailed analysis of the variability in the gamma-ray range, but also compare the time profiles with the results of measurements with other RELEC instruments (the detector of optical and ultraviolet flares, radio-frequency and low-frequency analyzers of electromagnetic field parameters), as well as with the data of ground-based facility for thunderstorm activity. This paper presents the first catalog of Terrestrial gamma-ray flashes. The criterion for selecting flashes required in order to detect no less than 5 hard quanta in 1 ms by at least two independent detectors. The TGFs included in the catalog have a typical duration of ~400 μs, during which 10–40 gamma-ray quanta were detected. The time profiles, spectral parameters, and geographic position, as well as a result of a comparison with the output data of other Vernov instruments, are presented for each of candidates. The candidate for Terrestrial gamma-ray flashes detected in the near-polar region over Antarctica is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panasyuk, M.I., Svertilov, S.I., Bogomolov, V.V., et al., Experiment on the Vernov satellite: Transient energetic processes in the Earth’s atmosphere and magnetosphere. Part II. First results, Cosmic Res., 2016, vol. 54, no. 5, pp. 343–350.

    Article  ADS  Google Scholar 

  2. Fishman, G.J., Bhat, P.N., Mallozzi, R., et al., Discovery of intense gamma-ray flashes of atmospheric origin, Science, 1994, vol. 264, no. 5163, pp. 1313–1316. doi 10.1126/science.264.5163.1313

    Article  ADS  Google Scholar 

  3. Grefenstette, B.W., Smith, D.M., Hazelton, B.J., and Lopez, L.I., First RHESSI terrestrial gamma ray flash catalog, J. Geophys. Res., 2009, vol. 114, A02314. doi 10.1029/2008JA013721

    Article  ADS  Google Scholar 

  4. 3rd RHESSI catalog, 2014. http://scipp.pbsci.ucsc.edu/rhessi/.

  5. Briggs, M., Xiong, S., Connaughton, V., et al., Terrestrial gamma-ray flashes in Fermi era: Improved observations and analysis methods, J. Geophys. Res., 2013, vol. 118, pp. 3805–3830.

    Article  Google Scholar 

  6. Briggs, M., Connaughton, V., Stanbro, M., et al., The first Fermi gamma-ray burst monitor (GBM) terrestrial gamma-ray flash (TGF) catalog, Geophys. Res. Abstr., 2015, vol. 17, EGU2015–9961.

    Google Scholar 

  7. Briggs, M.S., Connaughton, V., Wilson-Hodge, C., et al., Electron–positron beams from terrestrial lightning observed with Fermi GBM, Geophys. Res. Lett., 2001, vol. 38, no. 2. doi 10.1029/2010GL046259

    Google Scholar 

  8. Grove, J.E. and Chekhtman, A., Fermi LAT collaboration. A four-year Fermi LAT survey of terrestrial gamma-ray flashes, Am. Astron. Soc. HEAD Meet., 2013, no. 13, id 127.27.

    Google Scholar 

  9. Tavani, M., Marisaldi, M., Labanti, C., et al., Terrestrial gamma-ray flashes as powerful particle accelerators, Phys. Rev. Lett., 2011, vol. 106, 018501. doi 0.1103/PhysRevLett.106.018501

    Article  ADS  Google Scholar 

  10. Marisaldi, M., Fuschino, F., Tavani, M., et al., Properties of terrestrial gamma ray flashes detected by AGILE MCAL below 30 MeV, J. Geophys. Res., 2014, vol. 119, pp. 1337–1355.

    Article  Google Scholar 

  11. Garipov, G.K., Svertilov, S.I., and Yashin, I.V., Physical characteristics and elaboration algorithms of triggers by the RGD instrument, in Missiya Chibis-M. Sbornik trudov vyezdnogo seminara. Seriya Mekhanika, upravlenie i informatika (The Chibis-M Mission. Proceedings of Field Seminar. Series: Mechanics, Control, and Informatics), Nazirov, R.R., Ed., Moscow: IKI RAN, 2009, pp. 48–57.

    Google Scholar 

  12. Gurevich, A., Zelenyi, L., and Klimov, S., The scientific objectives of the mission “Chibis-M”. “Chibis-M” Mission, in Missiya Chibis-M. Sbornik trudov vyezdnogo seminara. Seriya Mekhanika, upravlenie i informatika (The Chibis-M Mission. Proceedings of Field Seminar. Series: Mechanics, Control, and Informatics), Nazirov, R.R., Ed., Moscow: IKI RAN, 2009, pp. 7–25. http://www.cosmos.ru/books/2009chibis-m.pdf.

    Google Scholar 

  13. Kuznetsov, V.D., Ruzhin, Yu.Ya., and Sinel’nikov, V.M., Geophysical experiments on the International Space Station, Kosmichna Nauka Tekhnol., 2011, vol. 17, no. 1, pp. 12–16.

    Google Scholar 

  14. Kotov, Yu., Arkhangelskaja, I., Arkhangelsky, A., et al., The study of cosmic gamma-emission nonstationary fluxes characteristics by the AVS-F apparatus data, in The Coronas-F Space Mission: Key Results for Solar Terrestrial Physics, Kuznetsov, V.D, Ed., Springer, 2014, pp. 175–256.

    Chapter  Google Scholar 

  15. Churazov, E., Sunyaev, R., Revnivtsev, M., et al., Integral observations of the cosmic X-ray background in the 5–100 keV range via occultation by the Earth, Astron. Astrophys., 2007, vol. 467, no. 2, pp. 529–540.

    Article  ADS  Google Scholar 

  16. Minaev, P.Yu., Sozanenko, A.S., Molkov, S.V., and Grebenev, S.A., Catalog of short gamma-ray transients detected in the SPI/INTEGRAL experiment, Astron. Lett., 2014, vol. 40, no. 5, pp. 235–267. doi 10.7868/S0320010814050039

    Article  ADS  Google Scholar 

  17. Tierney, D., Briggs, M.S., Fitzpatrick, G., et al., Fluence distribution of terrestrial gamma-ray flashes observed by the Fermi gamma-ray burst monitor, J. Geophys. Res., 2013, vol. 118, pp. 6644–6650.

    Article  Google Scholar 

  18. Norris, J.P., Bonnell, J.T., Kazanas, D., et al., Longlag, wide pulse gamma-ray bursts, Astrophys. J., 2005, vol. 627, pp. 324–345.

    Article  ADS  Google Scholar 

  19. Gurevich, A.V., Milikh, G.M., and Roussel-Dupre, R., Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm, Phys. Lett. A, 1992, vol. 165, pp. 463–468.

    Article  ADS  Google Scholar 

  20. Dwyer, J.R. and Smith, D.M., A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations, Geophys. Res. Lett., 2005, vol. 32, no. 22, L22804.

    Article  ADS  Google Scholar 

  21. Dwyer, J.R., Relativistic breakdown in planetary atmospheres, Phys. Plasmas, 2007, vol. 14, no. 4. doi 10.1063/1.2709652

    Google Scholar 

  22. Moss, G.D., Pasko, V.P., Liu, N., and Veronis, G., Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders, J. Geophys. Res., 2006, vol. 111, no. A2. doi 10.1029/2005JA011350

    Google Scholar 

  23. Østgaard, N., Gjesteland, T., Stadsnes, J., et al., Production altitude and time delays of the terrestrial gamma flashes: Revisiting the burst and transient source experiment spectra, J. Geophys. Res., 2008, vol. 113, no. A2. doi 10.1029/2007JA012618

    Google Scholar 

  24. Fishman, G.J., Briggs, M.S., Connaughton, V., et al., Temporal properties of the terrestrial gamma-ray flashes from the Gamma-Ray Burst Monitor on the Fermi Observatory, J. Geophys. Res., 2011, vol. 116, no. A7. doi 10.1029/2010JA016084

    Google Scholar 

  25. Dwyer, J.R., The relativistic feedback discharge model of terrestrial gamma ray flashes, J. Geophys. Res., 2012, vol. 117, no. A2. doi 10.1029/2011JA017160

    Google Scholar 

  26. Connaughton, V., Briggs, M.S., Xiong, S., et al., Radio signals from electron beams in terrestrial gamma-ray flashes, J. Geophys. Res., 2013, vol. 118, pp. 2313–2320.

    Article  Google Scholar 

  27. Holzworth, R.H., World Wide Lightning Location Network, 2015. http://wwlln.net.

    Google Scholar 

  28. Bogomolov, A.V., Bogomolov, V.V., Garipov, G.K., et al., The upper limit of gamma-radiation intensity during thunderstorm activity according to Chibis-M microsatellite measurement data, in Tezisy konferentsii “Fizika plazmy v solnechnoi sisteme-2016” (Abstracts of the Conference “Plasma Physics in the Solar System- 2016”), Moscow: IKI RAN, 2016, p. 201. http://plasma2016.cosmos.ru

    Google Scholar 

  29. Briggs, M.S., Fishman, G.J., Connaughton, V., et al., First results on terrestrial gamma ray flashes from the Fermi Gamma-Ray Burst Monitor, J. Geophys. Res., 2010, vol. 115. doi 10.1029/2009JA015242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Svertilov.

Additional information

Original Russian Text © V.V. Bogomolov, M.I. Panasyuk, S.I. Svertilov, A.V. Bogomolov, G.K. Garipov, A.F. Iyudin, P.A. Klimov, S.I. Klimov, T.M. Mishieva, P.Yu. Minaev, V.S. Morozenko, O.V. Morozov, A.S. Posanenko, A.V. Prokhorov, H. Rotkel, 2017, published in Kosmicheskie Issledovaniya, 2017, Vol. 55, No. 3, pp. 169–178.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogomolov, V.V., Panasyuk, M.I., Svertilov, S.I. et al. Observation of Terrestrial gamma-ray flashes in the RELEC space experiment on the Vernov satellite. Cosmic Res 55, 159–168 (2017). https://doi.org/10.1134/S0010952517030017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952517030017

Navigation