Skip to main content
Log in

Fine structure of the interplanetary shock front according to measurements of the ion flux of the solar wind with high time resolution

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

According to the data of the BMSW/SPEKTR-R instrument, which measured the density and velocity of solar wind plasma with a record time resolution, up to ~3 ×10–2 s, the structure of the front of interplanetary shocks has been investigated. The results of these first investigations were compared with the results of studying the structure of the bow shocks obtained in previous years. A comparison has shown that the quasi-stationary (averaged over the rapid oscillations) distribution of plasma behind the interplanetary shock front was significantly more inhomogeneous than that behind the bow-shock front, i.e., in the magnetosheath. It has also been shown that, to determine the size of internal structures of the fronts of quasi-perpendicular (θBN > 45°) shocks, one could use the magnetic field magnitude, the proton density, and the proton flux of the solar wind on almost equal terms. A comparison of low Mach (М А < 2), low beta (β1 < 1) fronts of interplanetary and bow shocks has shown that the dispersion of oblique magnetosonic waves plays an essential role in their formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sagdeev, R.Z., Collective processes and shock waves in low-density plasma, in Voprosy teorii plazmy (Problems in the Theory of Plasma), Moscow: Atomizdat, 1964, vol. 4, pp. 20–80.

    Google Scholar 

  2. Galeev, A.A. and Sagdeev, R.Z., Lectures on the Non-Linear Theory of Plasma, Trieste, Italy, 1966, p. 35.

    MATH  Google Scholar 

  3. Tidman, D.A., Turbulent shock waves in plasma, Phys. Fluids, 1967, vol. 10, pp. 547–568.

    Article  ADS  Google Scholar 

  4. Iskol’dskii, A.M., Kurtmullaev, R.Kh., Nesterikhin, Yu.E., et al., Experimental investigation of collisionless shock waves in a plasma, Sov. Phys. JETP, 1965, vol. 20, no. 2, pp. 517–519.

    Google Scholar 

  5. Zagorodnikov, S.P., Rudakov, L.I., Smolkin, G.E., et al., Observation of shock waves in a collisionless plasma, Sov. Phys. JETP, 1965, vol. 20, no. 5, pp. 1154–1156.

    Google Scholar 

  6. Paul, J.W.H., Holmes, L.S., Parkinson, M.J., et al., Experimental observations on the structure of collisionless shock waves in a magnetized plasma, Nature, 1965, vol. 208, pp. 133–135.

    Article  ADS  Google Scholar 

  7. Alikhanov, S.G., Belan, V.G., and Sagdeev, R.Z., Nonlinear ion-acoustic waves in a plasma, JETP Lett., 1968, vol. 7, no. 11, pp. 405–408.

    Google Scholar 

  8. Wong, A.Y. and Means, R.W., Evolution of turbulent electrostatic shock, Phys. Rev. Lett., 1971, vol. 27, no. 15, pp. 973–976.

    Article  ADS  Google Scholar 

  9. Volkov, O.L., Eselevich, V.G., Kichigin, G.N., et al., Turbulent shock wave in a low-density unmagnetized plasma, Sov. Phys. JETP, 1975, vol. 40, no. 5, pp. 841–842.

    ADS  Google Scholar 

  10. Moreno, G., Olbert, S., and Pai, L., Risultati di IMP-1 sul vento solare, Quad. Ric. Sci., 1966, vol. 45, pp. 119–135.

    Google Scholar 

  11. Bame, S.J., Asbridge, J.R., Gosling, J.T., et al., High temporal resolution observations of electron heating at the bow shock, Space Sci. Rev., 1979, vol. 23, no. 1, pp. 75–92.

    Article  ADS  Google Scholar 

  12. Vaisberg, O.L., Galeev, A.A., Klimov, S.I., et al., Energy dissipation mechanisms in high-M collisionless shock waves: A study based on measurements by the Prognoz 8 satellite, JETP Lett., 1982, vol. 35, no. 1, pp. 30–33.

    ADS  Google Scholar 

  13. Eselevich, V.G., Bow shock structure from laboratory and satellite experimental results, Planet. Space Sci., 1983, vol. 31, no. 6, pp. 615–631.

    Article  ADS  Google Scholar 

  14. Šafránková, J., Němeček, Z., Přech, L., et al., Fast solar wind monitor (BMSW): Description and first results, Space Sci. Rev., 2013, vol. 175, no. 1, pp. 165–182.

    Article  Google Scholar 

  15. Zastenker, G.N., Šafránková, J., Němeček, Z., et al., Fast measurements of parameters of the Solar Wind using the BMSW instrument, Cosmic Res., 2013, vol. 51, no. 2, pp. 78–89.

    Article  ADS  Google Scholar 

  16. Němeček, Z., Šafránková, J., Goncharov, O., et al., Ion scales of quasi-perpendicular low-Mach-number interplanetary shocks, Geophys. Res. Lett., 2013, vol. 40, pp. 4133–4137.

    Article  ADS  Google Scholar 

  17. Burlaga, L., Sitteler, E., Mariani, F., and Schwenn, R., Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP8 observations, J. Geophys. Res., 1981, vol. 86, no. A8, pp. 6673–6684.

    Google Scholar 

  18. Burlaga, L., Klein, L., Sheeley, N.R., Jr., et al., A magnetic cloud and a coronal mass ejection, Geophys. Res. Lett., 1982, vol. 9, no. 12, pp. 1317–1320.

    Article  ADS  Google Scholar 

  19. Burlaga, L., Micro-scale structure in the interplanetary medium, Sol. Phys., 1968, no. 4, pp. 67–92.

    Article  ADS  Google Scholar 

  20. Eselevich, M.V. and Eselevich, V.G., Fractal structure of the heliospheric plasma sheet in the Earth’s orbit, Geomagn Aeron. (Engl. Transl.), 2005, vol. 45, no. 3, pp. 326–336.

    Google Scholar 

  21. Eselevich, V.G., Shock wave structure in collisionless plasmas from results of laboratory experiments, Space Sci. Rev., 1982, vol. 32, no. 1, pp. 65–81.

    ADS  Google Scholar 

  22. Greensdadt, E.W., Russell, C.T., Scarf, F.L., et al., Structure of the quasi-perpendicular laminar bow shock, J. Geophys. Res., 1975, vol. 80, no. 4, pp. 502–514.

    Article  ADS  Google Scholar 

  23. Paschmann, G., Sckopke, N., Bame, S.J., and Gosling, J.T., Observations of gyrating ions in the foot of the nearly perpendicular bow shock, Geophys. Res. Lett., 1982, vol. 9, no. 8, pp. 881–884.

    Article  ADS  Google Scholar 

  24. Newbury, J.A., Russell, C.T., and Gedalin, M., The ramp width of high-Mach-number, quasi-perpendicular collisionless shocks, J. Geophys. Res., 1998, vol. 103, no. A12, pp. 29581–29593.

    Article  ADS  Google Scholar 

  25. Farris, M.H., Russell, C.T., and Thomsen, M.F., Magnetic structure of the low beta, quasi-perpendicular shock, J. Geophys. Res., 1993, vol. 98, no. A9, pp. 15285–15294.

    Article  ADS  Google Scholar 

  26. Eselevich, V.G., Es’kov, A.G., Kurtmullaev, R.Kh., et al., Isomagnetic discontinuity in a collisionless shock wave, Sov. Phys. JETP, 1971, vol. 33, no. 6, pp. 1120–1126.

    ADS  Google Scholar 

  27. Balikhin, M.A., Nozdrachev, M., Dunlop, M., et al., Observation of the terrestrial bow shock in quasi-electrostatic subshock regime, J. Geophys. Res., 2002, vol. 107, no. A8, pp. SSH 1-1–SSH 1-9.

    Google Scholar 

  28. Kennel, C.F., Edmiston, J.P., and Hada, T., A quarter century of collisionless shock research, in Collisionless Shocks in the Heliosphere: A Tutorial Review, Stone, R.G. and Tsurutani, B.T., Eds., Washington, D.C.: Am. Geophys. Union, 1985, vol. 34, pp. 1–36.

    Chapter  Google Scholar 

  29. Song, P. and Russell, C.T., Time series data analyses in space physics, Space Sci. Rev., 1999, vol. 87, no. 3, pp. 387–463.

    Article  ADS  Google Scholar 

  30. Fairfield, D.H. and Feldman, W.C., Standing waves at low Mach number laminar bow shocks, J. Geophys. Res., 1975, vol. 80, pp. 515–522.

    Article  ADS  Google Scholar 

  31. Fredricks, R.W., Crook, Q.M., Kennel, C.F., et al., OGO 5 observation of electrostatic turbulence in bow shock magnetic structure, J. Geophys. Res., 1970, vol. 75, pp. 3751–3768.

    Article  ADS  Google Scholar 

  32. Formisano, V., Hedgecock, P.C., Moreno, G., et al., Observations of Earth’s bow shock for low Mach numbers, Planet. Space Sci., 1971, vol. 19, no. 11, pp. 1519–1531.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Eselevich.

Additional information

Original Russian Text © V.G. Eselevich, N.L. Borodkova, M.V. Eselevich, G.N. Zastenker, Y. Šafránkova, Z. Němeček, L. Přech, 2017, published in Kosmicheskie Issledovaniya, 2017, Vol. 55, No. 1, pp. 32–47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eselevich, V.G., Borodkova, N.L., Eselevich, M.V. et al. Fine structure of the interplanetary shock front according to measurements of the ion flux of the solar wind with high time resolution. Cosmic Res 55, 30–45 (2017). https://doi.org/10.1134/S0010952517010038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952517010038

Navigation