Skip to main content
Log in

Dynamics of debye-scale nonstationary plasma structures in the region of auroral field-aligned currents

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

We consider the formation of small-scale nonstationary plasma structures in the region of relatively strong field-aligned electric currents. The formation of these structures has been shown to be associated with the density instability developed when the current velocity exceeds a critical value. The conditions for the development of this instability can be most favorable in the region of low-density plasma. Numerical calculations have been performed for the initial nonlinear stage of the structure development. The main parameters of the structure, i.e., the times of its formation and destruction, spatial scales, and electric field, have been estimated. The features of the structures are consistent with the existing data from space experiments in the region of auroral field-aligned currents of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akasofu, S.-I. and Chapman, S., Solar–Terrestrial Physics, Oxford: Clarendon, 1972; Moscow: Mir, 1975.

    Google Scholar 

  2. Kozlovsky, A.E. and Lyatsky, W.B., Alfvén wave generation by disturbance of ionospheric conductivity in the field-aligned current region, J. Geophys. Res., 1997, vol. 102, pp. 17297–17303.

    Article  ADS  Google Scholar 

  3. Wu, K. and Seyler, C.E., Instability of inertial Alfvén waves in transverse sheared flow, J. Geophys. Res., 2003, vol. 108, no. A6. doi 10.1029/2002JA009631

    Google Scholar 

  4. Stasiewicz, K., Bellan, P., Chaston, C., et al., Small scale Alfvénic structure in the aurora, Space Sci. Rev., 2000, vol. 92, no. 3, pp. 423–533.

    Article  ADS  Google Scholar 

  5. Carlson, C.W., Pfaff, R.F., and Watzin, J.G., Fast auroral snapshot (FAST) mission, Geophys. Res. Lett., 1998, vol. 25, pp. 2013–2016.

    Article  ADS  Google Scholar 

  6. Chaston, C.C., Carlson, C.W., Peria, W.J., and Ergun, R.E., FAST observations of inertial Alfvén waves in the dayside aurora, Geophys. Res. Lett., 1998, vol. 26, pp. 647–650.

    Article  ADS  Google Scholar 

  7. Chaston, C.C., Carlson, C.W., and Ergun, R.E., Alfvén waves, density cavities and electron acceleration observed from the FAST spacecraft, Phys. Scr., 2000, pp. 64–68.

    Google Scholar 

  8. Chaston, C.C., Bonnell, J.W., Carlson, C.W., et al., Auroral ion acceleration in dispersive Alfvén waves, J. Geophys. Res., 2004, vol. 109, A04205. doi 10.1029/2003JA010053

    Article  ADS  Google Scholar 

  9. Wygant, J.R., et al., Evidence for kinetic alfven waves and parallel electron energisation at 4–6 RE altitudes in the plasma sheet boundary layer, J. Geophys. Res., 2002, vol. 107, no. A8, pp. SMP 24-1–SMP 24-15. doi 10.1029/2002JA900113

    Article  Google Scholar 

  10. Génot, V., Louran, P., and Mottez, F., Alfvén wave interaction with inhomogeneous plasmas: Acceleration and energy cascade towards small scales, Ann. Geophys., 2004, vol. 22, pp. 2081–2096.

    Article  ADS  Google Scholar 

  11. Louarn, P., Wahlund, J.-E., Chust, T., de Feraudy, H., Roux, A., Holback, B., Dovner, P.O., Eriksson, A.I., and Holmgre, G., Observations of kinetic Alfvén waves by the Freja spacecraft, Geophys. Res. Lett., 1994, vol. 21, no. 17, pp. 1847–1850.

    Article  ADS  Google Scholar 

  12. Chaston, C.C., Bonnell, J.W., Carlson, C.W., et al., Properties of small-scale Alfvén waves and accelerated electrons from FAST, J. Geophys. Res., 2003, vol. 108, no. A4. doi 10.1029/2002JA009420

    Google Scholar 

  13. Wu, D.J. and Chao, J.K., Recent progress in nonlinear kinetic Alfvén waves, Nonlinear Processes Geophys., 2004, vol. 11, pp. 631–645.

    Article  ADS  Google Scholar 

  14. Osmane, A., Wilson, L.B., Blum, L., and Pulkkinen, T.I., On the connection between microbursts and nonlinear electronic structures in planetary radiation belts, Astrophis. J., 2016, vol. 816, no. 2. doi 10.3847.0004- 637X/816/2/51

    Google Scholar 

  15. Braginskii, S.I., Transfer phenomena in plasma, in Voprosy teorii plazmy (Problems in the Theory of Plasma), Leontovich, M.A., Ed., Moscow: Gosatomizdat, 1963, vol. 1, pp. 183–271.

    Google Scholar 

  16. Bespalov, P.A. and Mizonova, V.G., 3D model of small-scale density cavern formation in the region of auroral field-aligned currents, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 6, pp. 723–729.

    Article  ADS  Google Scholar 

  17. Bespalov, P.A. and Mizonova, V.G., Formation of density cavities with a nonstationary electric field in the zone of auroral field-aligned currents, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 4, pp. 483–491.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Bespalov.

Additional information

Original Russian Text © P.A. Bespalov, V.G. Mizonova, 2017, published in Kosmicheskie Issledovaniya, 2017, Vol. 55, No. 1, pp. 69–74.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespalov, P.A., Mizonova, V.G. Dynamics of debye-scale nonstationary plasma structures in the region of auroral field-aligned currents. Cosmic Res 55, 67–71 (2017). https://doi.org/10.1134/S0010952517010014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952517010014

Navigation