Cosmic Research

, Volume 54, Issue 6, pp 483–490 | Cite as

Orbital and angular motion construction for low thrust interplanetary flight

  • R. V. Yelnikov
  • Y. V. MashtakovEmail author
  • M. Yu. Ovchinnikov
  • S. S. Tkachev


Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Efimov, G.B., Egorov, V.A., and Akhmetshin, R.Z., On a low thrust SC flight to comets and asteroids, in Issledovanie tvorchestva osnovopolozhnikov kosmonavtiki i ee sovremennye problemy (Investigation of the Cosmonautics Pioneers Legacy and Actual Problems of Cosmonautics), Moscow: Nauka, 1989, pp. 144–152.Google Scholar
  2. 2.
    Egorov, V.A., Eneev, T.M., and Efimov, G.B., Ballistic analysis for a low-thrust flight to asteroids and comets, in Intellektual’nye sistemy avtonomnyh apparatov dlya kosmosa i okeana (Intelligent Systems of Self-Supporting Instruments for Space and Ocean), Bugrovskii, V.V., Ed., Moscow: IPU RAN, 1997, pp. 40–72.Google Scholar
  3. 3.
    Ivashkin, V.V. and Krylov, I.V., Hybrid optimization method for space flight with low thrust and its use for flight from Earth to asteroid Apophis, Preprint no. 56, Moscow: Keldysh Institute of Applied Mathematics, RAS, 2011, p. 32.Google Scholar
  4. 4.
    Salmin, V.V., Vasil’ev, V.V., Ishkov, S.A., et al., Approximate calculation methods for optimal flights of spacecraft with low-thrust engines,part 1, Vestn. Samar. Gos. Univ., Ser. Aerokosm. Tekh. Tekhnol. Mashinostr., 2007, no. 1, pp. 37–52.Google Scholar
  5. 5.
    Pontryagin, L.S., Mathematical Theory of Optimal Processes, CRC Press, 1986.zbMATHGoogle Scholar
  6. 6.
    Moré, J.J., Sorensen, D.C., Hillstrom, K.E., and Garbow, B.S., The MINPACK project, in Sources and Development of Mathematical Software, Prentice-Hall, 1984, pp. 88–111.Google Scholar
  7. 7.
    Branets, V.N. and Shmyglevskii, I.P., Primenenie kvaternionov v zadachakh orientatsii tverdogo tela (The Use of Quaternions in Rigid Body Attitude Problems), Moscow: Nauka, 1973.Google Scholar
  8. 8.
    Rogers, D.F. and Adams, J.A., Mathematical Elements for Computer Graphics, McGraw-Hill, 1999.Google Scholar
  9. 9.
    Wie, B. and Lu, J., Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints, J. Guid. Control Dyn., 1995, vol. 18, no. 6, pp. 1372–1379.ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Wie, B. and Barba, P.M., Quaternion feedback for spacecraft large angle maneuvers, J. Guid. Control. Dyn., 1985, vol. 8, no. 3, pp. 360–365.ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Tsiotras, P., New control laws for the attitude stabilization of rigid bodies, in 13th IFAC Symposium on Automatic Control in Aerospace, 1994, pp. 316–321.Google Scholar
  12. 12.
    Barbashin, E.A., Introduction to the Theory of Stability, Wolters-Noordhoff, 1970.zbMATHGoogle Scholar
  13. 13.
    Ovchinnikov, M.Yu., Tkachev, S.S., and Karpenko, S.O., A study of the angular motion of the Chibis-M microsatellite with three-axis flywheel control, Cosmic Res., 2012, vol. 50, no. 6, pp. 431–441.ADSCrossRefGoogle Scholar
  14. 14.
    Fliegel, H.F., Gallini, T.E., and Swift, E.R., Global positioning system radiation force model for geodetic applications, J. Geophys. Res., 1992, vol. 97, no. B1, pp. 559–568.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • R. V. Yelnikov
    • 1
  • Y. V. Mashtakov
    • 2
    Email author
  • M. Yu. Ovchinnikov
    • 2
  • S. S. Tkachev
    • 2
  1. 1.Research Institute of Applied Mechanics and ElectrodynamicsMoscowRussia
  2. 2.Keldysh Institute of Applied Mathematics of RASMoscowRussia

Personalised recommendations