Skip to main content
Log in

Optimization of measurements of the Earth’s radiation belt particle fluxes

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The Earth’s radiation belts discovered at the end of the 1950s have great scientific and practical interest. Their main characteristics in magnetically quiet periods are well known. However, the dynamics of the Earth’s radiation belts during magnetic storms and substorms, particularly the dynamics of relativistic electrons of the outer belt, when Earth’s radiation belt particle fluxes undergo significant time variations, is studied insufficiently. At present, principally new experiments have been performed and planned with the intention to better study the dynamics of the Earth’s radiation belts and to operationally control the space-energy distributions of the Earth’s radiation belt particle fluxes. In this paper, for spacecraft designed to measure the fluxes of electrons and protons of the Earth’s radiation belts at altitudes of 0.5–10000 km, the optimal versions for detector orientation and orbital parameters have been considered and selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vette, J.I., The AE-8 Trapped Electron Model Environment, Greenbelt, Maryland: National Space Science Data Center (NSSDC) World Data Center A for Rockets and Satellites (WDC-A-R&S), 1991.

    Google Scholar 

  2. Sawyer, D.M. and Vette, J.I., AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum (Tech. Rep. 76–06), Greenbelt, Maryland: National Space Science Data Center (NSSDC) World Data Center A for Rockets and Satellites (WDC-A-R&S), 1979.

    Google Scholar 

  3. Getselev, I.V., Gusev, A.A., Darchieva, L.A., et al., Model’ prostranstvenno-energeticheskogo raspredeleniya potokov zakhvachennykh chastits (protonov i elektronov) v radiatsionnykh poyasakh Zemli (Model of the Spatial and Energetic Distribution of Fluxes of Trapped Particles (Protons and Electrons) in the Earth’s Radiation Belts), Moscow: MGU, 1991.

    Google Scholar 

  4. Getselev, I.V., Sosnovets, E.N., Kovtyukh, A.S., et al., An empirical model of the radiation belt of Helium nuclei, Cosmic Res., 2005, vol. 43, no. 4, pp. 229–232.

    Article  ADS  Google Scholar 

  5. Mullen, E.G., Gussenhoven, M.S., Ray, K., and Violet, M.A., A double-peaked inner radiation belt: Cause and effect as seen on CRRES, IEEE Trans. Nucl. Sci., 1991, vol. 38, pp. 1713–1718.

    Article  ADS  Google Scholar 

  6. Roederer, J.G., Dynamics of Geomagnetically Trapped Radiation, New York: Springer, 1970.

    Book  Google Scholar 

  7. Shabanskii, V.P., Yavleniya v okolozemnom prostranstve (Phenomena in the Near-Erath Space), Moscow: Nauka, 1972.

    Google Scholar 

  8. Williams, D.J., Arens, J.F., and Lanzerotti, L.J., Observations of trapped electrons at low and high altitudes, J. Geophys. Res., 1968, vol. 73, pp. 5673–5696. doi 10.1029/JA073i017p05673

    Article  ADS  Google Scholar 

  9. Baker, D.N., Blake, J.B., Klebesadel, R.W., and Higbie, P.R., Highly relativistic electrons in the Earth’s outer magnetosphere: 1. Lifetimes and temporal history 1979–1984, J. Geophys. Res., 1986, vol. 91, pp. 4265–4276.

    Article  ADS  Google Scholar 

  10. Williams, D.J., A 27-day periodicity in outer zone trapped electron intensities, J. Geophys. Res., 1966, vol. 71, pp. 1815–1826.

    Article  ADS  Google Scholar 

  11. Li, X., Baker, D.N., Kanekal, S.G., et al., Long-term measurements of radiation belts by SAMPEX and their variations, Geophys. Res. Lett., 2001, vol. 28, pp. 3827–3830.

    Article  ADS  Google Scholar 

  12. Gorchakov, E.V., Afanas’ev, V.G., Afanas’ev, K.G., et al., Study of fast charged particles with the help of a Cherenkov detector on the “Kosmos-900” artificial Earth satellite, Izv. Vyssh. Uchebn. Zaved., Fiz., 1987, no. 10, pp. 69–74.

    Google Scholar 

  13. Tverskaya, L.V., The latitude position dependence of the relativistic electron maximum as a function of Dst, Adv. Space Res., 1996, vol. 18, no. 8, pp. 135–138.

    Article  ADS  Google Scholar 

  14. Kovtyukh, A.S., Storm deviations of the geomagnetic trap core from dipole configuration deduced from data on relativistic electrons, Cosmic Res., 2012, vol. 50, no. 3, pp. 226–232.

    Article  ADS  Google Scholar 

  15. Reeves, G.D., McAdams, K.L., Friedel, R.H.W., and O’Brien, T.P., Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 2003, vol. 30, no. 10.

    Google Scholar 

  16. O’Brien, T.P., McPherron, R.L., Sornette, D., et al., Which magnetic storms produce relativistic electrons at geosynchronous orbit?, J. Geophys. Res., 2001, vol. 106, pp. 15533–15544.

    Article  ADS  Google Scholar 

  17. Vlasova, N.A., Kovtyukh, A.S., Panasyuk, M.I., et al., Coupling between spatial, angular, and energetic distributions of particles on the geostationary orbit, Kosm. Issled., 1989, vol. 27, no. 1, pp. 94–101.

    ADS  Google Scholar 

  18. Kovtyukh, A.S., On the form of the energetic spectrum of protons in the Earth’s radiation belts and its formation mechanisms, Geomagn. Aeron., 1985, vol. 25, no. 6, pp. 886–892.

    ADS  Google Scholar 

  19. Kovtyukh, A.S., Solar-cycle variations of invariant parameters of ion energy spectra of the Earth’s radiation belts, Cosmic Res., 1999, vol. 37, no. 1, pp. 53–64.

    ADS  Google Scholar 

  20. Kovtyukh, A.S., Panasyuk, M.I., Reizman, S.Ya., and Sosnovets, E.N., Spectral characteristics of protons on low and high altitudes during the geomagnetic storm of July 29, 1977, Kosm. Issled., 1984, vol. 22, no. 3, pp. 399–405.

    ADS  Google Scholar 

  21. Kremser, G., Korth, A., Ullaland, S., et al., Energetic electron precipitation during a magnetospheric substorm and its relationship to wave particle interaction, J. Geophys. Res., 1986, vol. 91, pp. 5711–5718.

    Article  ADS  Google Scholar 

  22. Imhof, W.L. and Nightingale, R.W., Relativistic electron enhancements observed over a range of L shells trapped at high altitudes and precipitating at low altitudes into the atmosphere, J. Geophys. Res., 1992, vol. 97, no. A5, pp. 6397–6403.

    Google Scholar 

  23. Kovtyukh, A.S., Coupling of pitch-angle and energetic distributions of ions in the Earth’s radiation belts, Geomagn. Aeron., 1993, vol. 33, no. 4, pp. 52–62.

    Google Scholar 

  24. Bashkirov, V.F. and Kovtyukh, A.S., Pitch-angle distributions of ions in the Earth’s radiation belts: 3. Mathematical model for the real magnetic field, Geomagn. Aeron., 1994, vol. 34, no. 2, pp. 29–37.

    ADS  Google Scholar 

  25. McIlwain, C.E., The radiation belts, natural and artificial, Science, 1963, vol. 142, pp. 355–361.

    Article  ADS  Google Scholar 

  26. West, H.I., Jr. and Buck, R.M., Pitch angle distributions of energetic electrons in the equatorial regions of the outer magnetosphere—OGO-5 observations, in Magnetospheric Physics, McCormac, B.M., Ed., Dordrecht: D. Reidel, 1974, pp. 93–104.

    Chapter  Google Scholar 

  27. Tverskoi, B.A., Dinamika radiatsionnykh poyasov Zemli (Dynamics of the Earth’s Radiation Belts), Moscow: Nauka, 1968.

    Google Scholar 

  28. Hess, W.N., The Radiation Belt and Magnetosphere, Waltham, Massachusetts: Blaisdell, 1968.

    Google Scholar 

  29. Schulz, M. and Lanzerotti, L.J., Particle Diffusion in the Radiation Belts, New York: Springer, 1974.

    Book  Google Scholar 

  30. Akasofu, S.-I. and Chapman, S., Solar–Terrestrial Physics, Oxford: Clarendon, 1972; Moscow: Mir, 1975.

    Google Scholar 

  31. Kovtyukh, A.S. and Panasyuk, M.I., The radiation belts of the Earth, in Plazmennaya geliogeofizika (Plasma Heliogeophysics), Zelenyi, L.M. and Veselovskii, I.S., Eds., Moscow: Fizmatlit, 2008, vol. 1, pp. 510–534.

    Google Scholar 

  32. Vlasova, N.A., Ginzburg, E.A., Kalegaev, V.V., et al., Penetration of solar cosmic rays into the Earth’s magnetosphere on January 28, 2012, Cosmic Res., 2013, vol. 51, no. 5, pp. 319–325.

    Article  ADS  Google Scholar 

  33. Sadovnichy, V.A., Panasyuk, M.I., Bobrovnikov, S.Yu., et al., First results of investigating the space environment onboard the Universitetskii-Tatyana Satellite, Cosmic Res., 2007, vol. 45, no. 4, pp. 273–387.

    Article  ADS  Google Scholar 

  34. The Van Allen Probes Mission, Space Sci. Rev., 2013, vol. 179, nos. 1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Tulupov.

Additional information

Original Russian Text © M.I. Panasyuk, M.V. Podzolko, A.S. Kovtyukh, I.A. Brilkov, N.A. Vlasova, V.V. Kalegaev, V.I. Osedlo, V.I. Tulupov, I.V. Yashin, 2017, published in Kosmicheskie Issledovaniya, 2017, Vol. 55, No. 2, pp. 85–93.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panasyuk, M.I., Podzolko, M.V., Kovtyukh, A.S. et al. Optimization of measurements of the Earth’s radiation belt particle fluxes. Cosmic Res 55, 79–87 (2017). https://doi.org/10.1134/S0010952516060071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952516060071

Navigation