Skip to main content
Log in

Estimation of potential abilities of middle atmosphere density measurements from a near-Earth orbit within the UV wavelength range

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Analysis of errors in atmospheric density measurements by lidar on board the ISS is performed. It is shown that using as the lidar transmitter a Nd:YAG laser with moderate parameters of emission at a wavelength of 353 nm and a receiving mirror diameter of 0.4 m, it is possible to cover with a 10% measurement error a height range, on average, from 40–60 km and 30–40 km in the nighttime and daytime, respectively, down to the troposphere. Working with emission at 266 nm with a 10% error, it is possible to move to the heights of the mesosphere (70 km) and penetrate the atmosphere down to a height of 40 km. Thus, the use of two harmonics makes it possible to assimilate the height range of atmospheric density measurements from on board the ISS beginning from 70 km and down to the troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McClatchey, R.A., Fenn, F.W., Selby, J.E., Volz, F.E., and Garing, J.S., Optical Properties of the Atmosphere, Air Force Cambridge Research Laboratories, 1971, AFCRL-71-0279, Environ. Res. Pap. no. 354.

  2. Angot, G. and Keckhut, Ph., Hauchecorne, A., and Claud, Ch., Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44° N), J. Geophys. Res., 2012, vol. 117, D21102.

  3. Zann, U., Cossart, G., Fiedler, J., et al., The ALOMAR Rayleigh/Mie/Raman lidar objectives, configuration, and performance, Ann. Geophys., 2000, no. 18, pp. 815–833.

    Article  Google Scholar 

  4. Balin, Yu.S. and Tikhomirov, A.A., The history of development and operation of the first Russian space lidar BALKAN integrated into Mir space station, Opt. Atmos. Okeana, 2011, vol. 24, no. 12, pp. 1078–1087.

    Google Scholar 

  5. Burlakov, V.D., Dolgii, S.I., Nevzorov, A.V., et al., Traces of eruption of Eyjafjallajökull volcano according to data of lidar observations in Tomsk and Surgut, Atmos. Oceanic Opt., 2012, vol. 25, no. 2, pp. 110–117.

    Article  Google Scholar 

  6. Burlakov, V.D., Dolgii, S.I., and Nevzorov, A.V., Lidar observations of the stratosphere aerosol disturbances over Tomsk (56.5° N; 85.0° E) in period of volcanic activity of 2006–2010, Opt. Atmos. Okeana, 2011, vol. 24, no. 12, pp. 1031–1040.

    Google Scholar 

  7. Bychkov, V.V., Perezhogin, A.S., Shevtsov, B.M., et al., Accounting for pulses of photomultiplier tube aftereffect in lidar signals of the Kamchatka middle atmosphere, Opt. Atmos. Okeana, 2011, vol. 24, no. 2, pp. 107–113.

    Google Scholar 

  8. Bychkov, V.V., Perezhogin, A.S., Perezhogin, A.S., et al., Lidar observations of aerosol occurrence in the middle atmosphere of Kamchatka in 2007–2011, Atmos. Oceanic Opt., 2012, vol. 25, no. 3, pp. 228–235.

    Article  Google Scholar 

  9. Bychkov, V.V., Shevtsov, B.M., and Marichev, V.N., Some statistically average characteristics of occurrence of aerosol scattering in the middle atmosphere of Kamchatka, Atmos. Oceanic Opt., 2013, vol. 26, no. 2, pp. 104–106.

    Article  Google Scholar 

  10. Marichev, V.N., Lidar investigations of stratospheric warming events above Tomsk in 2008–2010, Opt. Atmos. Okeana, 2011, vol. 24, no. 5, pp. 386–391.

    Google Scholar 

  11. Marichev, V.N., Investigation into features of manifestation of winter stratospheric warming events over Tomsk from the data of lidar temperature measurements in 2010–2011, Opt. Atmos. Okeana, 2011, vol. 24, no. 12, pp. 1041–1046.

    Google Scholar 

  12. Marichev, V.N., Investigation of variability of the background aerosol vertical structure above Tomsk based on lidar observations in 2010–2011, Opt. Atmos. Okeana, 2012, vol. 25, no. 11, pp. 976–984.

    Google Scholar 

  13. Marichev, V.N., Matvienko, G.G., Lisenko, A.A., et al., First results of an integrated experiment on sounding the middle atmosphere in optical and millimeter wavelength ranges (over Tomsk), Atmos. Oceanic Opt., 2013, vol. 26, no. 3, pp. 222–226.

    Article  Google Scholar 

  14. Marichev, V.N. and Samokhvalov, I.V., Lidar observations of aerosol volcanic layers in stratosphere of Western Siberia in 2008–2010, Opt. Atmos. Okeana, 2011, vol. 24, no. 3, pp. 224–231.

    Google Scholar 

  15. Pavlov, A.N., Stolyarchuk, S.Yu., Shmirko, K.A., and Bukin, O.A., Lidar measurements of variability of the vertical ozone distribution caused by the stratosphere–troposphere exchange in the Far East Region, Opt. Atmos. Okeana, 2013, vol. 26, no. 2, pp. 126–134.

    Article  Google Scholar 

  16. Cheremisin, A.A., Marichev, V.N., and Novikov, P.V., Lidar observations of volcanic aerosol content in the atmosphere over Tomsk, Russ. Meteorol. Hydrol., 2011, vol. 36, no. 9, pp. 600–607.

    Article  Google Scholar 

  17. Marichev, V.N. and Bochkovskii, D.A., Lidar measurements of air density in the middle atmosphere. Part

  18. Modeling of the potential capabilities in the visible spectral range, Opt. Atmos. Okeana, 2013, vol. 26, no. 7, pp. 553–563.

  19. Ippolitov I.I., Komarov V.S., and Mitsel’, A.A., An opticometeorological model of the atmosphere for simulating lidar measurements and calculating radiation transfer, in Spektrometricheskie metody zondirovaniya atmosfery (Spectrometric Methods of Atmospheric Sounding), Novosibirsk: Nauka, 1985, pp. 4–44.

    Google Scholar 

  20. Dozier, J., A clear-sky spectral solar radiation model for snow-covered mountainous terrain, Water Resour. Res., 1980, vol. 16, no. 4, pp. 709–718.

    Article  ADS  Google Scholar 

  21. Zuev, V.E. and Komarov, V.S., Statisticheskie modeli temperatury i gazovykh komponent atmosfery (Statistical Models of Temperature and Gas Components of the Atmosphere), Leningrad Gidrometeoizdat, 1986.

    Google Scholar 

  22. Molina, L.T. and Molina, M.J., Absolute absorption cross sections of ozone in the 185–150 nm wavelength range, J. Geophys. Res., 1986, vol. 91, no. 13, pp. 14501–14508.

    Article  ADS  Google Scholar 

  23. Zuev, V.E., Rasprstranenie vidimykh i infrakrasnykh voln v atmosfere (Propagation of Visible and Infrared Waves in the Atmosphere), Moscow Sovetskoe radio, 1970.

    Google Scholar 

  24. Purmal’, A.P., Stratified sky, Khim Zhizn., XXI Vek, 2005, no. 8, pp. 20–21.

    Google Scholar 

  25. Zuev, V.V., Zuev, V.E., and Marichev, V.N., Observations of the stratospheric aerosol layer due to Mt. Pinatubo eruption at a network of lidar stations, Opt. Atmos. Okeana, 1993, vol. 6, no. 10, pp. 1180–1201.

    Google Scholar 

  26. Burlakov, V.D., El’nikov, A.V., Zuev, V.V., et al., Traces of the Pinatubo volcano eruption in the stratosphere over Western Siberia, Opt. Atmos. Okeana, 1992, vol. 5, no. 6, pp. 379–380.

    Google Scholar 

  27. Collins, R.L., Polar stratospheric clouds at South Pole in 1990: Lidar observations and analysis, J. Geophys. Res., 1991, vol. 98, no. D1, pp. 1001–1010.

    Article  ADS  Google Scholar 

  28. Khromov, S.P. and Mamontova, L.I., Meteorologicheskii slovar’ (Meteorological Dictionary), Leningrad Gidrometeoizdat, 1974.

    Google Scholar 

  29. Marichev, V.N. and Ilyushik, V.Yu., Variability of the aerosol vertical structure in the stratosphere over Tomsk according to lidar observations in 2011, in Sbornik dokladov 18-go mezhdunarodnogo simpoziuma “Optika atmosfery i okeana. Fizika atmosfery” (Proceedings of the 18th International Symposium “Atmospheric and Oceanic Optics. Atmospheric Physics”), Irkutsk, 2012, pp. D-78–82.

    Google Scholar 

  30. El’nikov, A.V., Krekov, G.M., and Marichev, V.N., Lidar observations of the stratospheric aerosol layer over Western Siberia, Izv. Akad. Nauk: Fiz. Atmos. Okeana, 1988, vol. 24, no. 8, pp. 818–823.

    ADS  Google Scholar 

  31. Ivanov, V.N., Zubachev, D.S., Korshunov, V.A., et al., Lidar observations of stratospheric aerosol traces of Chelyabinsk meteorite, Opt. Atmos. Okeana, 2014, vol. 27, no. 2, pp. 117–122.

    Google Scholar 

  32. Cheremisin, A.A., Marichev, V.N., and Novikov, P.V., Transport of polar stratospheric clouds from the Arctic to Tomsk in January 2010, Atmos. Oceanic Opt., 2013, vol. 26, no. 6, pp. 492–498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Marichev.

Additional information

Original Russian Text © V.N. Marichev, D.A. Bochkovskii, I.V. Sorokin, V.V. Bychkov, 2016, published in Kosmicheskie Issledovaniya, 2016, Vol. 54, No. 3, pp. 217–228.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marichev, V.N., Bochkovskii, D.A., Sorokin, I.V. et al. Estimation of potential abilities of middle atmosphere density measurements from a near-Earth orbit within the UV wavelength range. Cosmic Res 54, 205–216 (2016). https://doi.org/10.1134/S0010952516030047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952516030047

Navigation