Skip to main content

Conditions for appearance of strange attractors in rotational dynamics of small planetary satellites

Abstract

The conditions for the origination of strange attractors in the rotational dynamics of small planetary satellites when they reach a neighborhood of a synchronous resonance separatrix in the course of tidal evolution of the rotary motion are investigated by means of numerical experiments. It is assumed that a satellite has an arbitrary shape and moves along a fixed orbit in the gravitational field of a point-like mass; its rotational axis is orthogonal to the orbit plane. By calculating Lyapunov exponents, the regions of the values of problem parameters have been found where a strange attractor exists. The possibility of the appearance strange attractor in the rotational dynamics of real small planetary satellites is considered.

This is a preview of subscription content, access via your institution.

References

  1. Aleshkina, E.Yu., Capture of large planetary satellites into a spin-orbit resonance, Astron. Vestn., 2009, vol. 43, no. 1, pp. 75–82 [Sol. Sys. Res., 75–82].

    Google Scholar 

  2. Beletskii, V.V., Regulyarnye i khaoticheskie dvizheniya tverdykh tel (Regular and Chaotic Motions of Solid Bodies), Moscow-Izhevsk: IKM, 2007.

    Google Scholar 

  3. Devyatkin, A.V., Gorshanov, D.L., Gritsuk, A.N., et al., Observations and theoretical analysis of light curves of natural planetary satellites, Astron. Vestn., 2002, vol. 36, no. 3, pp. 269–281 [Sol. Sys. Res., 269–281].

    Google Scholar 

  4. Lichtenberg, A.J. and Liberman, M.A., Regular and Chaotic Dynamics, New York: Springer, 1992. Translated under the title Regulyarnaya i stokhasticheskaya dinamika, Moscow: Mir, 1984, first edition.

    MATH  Google Scholar 

  5. Loskutov, A.Yu., Charming chaos, Usp. Fiz. Nauk, 2010, vol. 180, no. 12, pp. 1305–1329.

    Article  MathSciNet  Google Scholar 

  6. Mel’nikov, A.V., Bifurcation regime of a synchronous resonance in the translational-rotational motion of nonspherical natural satellites of planets, Cosmic Research, 2001, vol. 39, no. 1, pp. 68–77.

    ADS  Article  Google Scholar 

  7. Mel’nikov, A.V. and Shevchenko, I.I., Stability of rotational motion of nonspherical natural satellites with respect to the rotation axis inclination, Astron. Vestn., 1998, vol. 32, no. 6, pp. 548–559 [Sol. Sys. Res., 480–490].

    Google Scholar 

  8. Mel’nikov, A.V. and Shevchenko, I.I., Unusual regimes of rotation of small planetary satellites, Astron. Vestn., 2007, vol. 41, no. 6, pp. 521–530 [Sol. Sys. Res., 483–491].

    Google Scholar 

  9. Hairer, E., Nørsett, S.P., and Wanner, G., Solving Ordinary Differential Equations: I. Nonstiff Problems, Berlin: Springer, 1987. Translated under the title Reshenie obyknovennykh differentsial’nykh uravnenii. Nezhestkie zadachi, Moscow: Mir, 1990.

    Book  MATH  Google Scholar 

  10. Shevchenko, I.I., Maximum Lyapunov exponents for chaotic rotation of natural planetary satellites, Cosmic Research, 2002, vol. 40, pp. 296–304.

    ADS  Article  Google Scholar 

  11. Shevchenko, I.I. and Mel’nikov, A.V., Lyapunov exponents in the Hénon-Heiles problem, Pis’ma Zh. Eksp. Teor. Fiz., 2003, vol. 77, no. 12, pp. 772–777 [JETP Letters, 642–646].

    Google Scholar 

  12. Batygin, K. and Morbidelli, A., Onset of secular chaos in planetary systems: period doubling and strange attractors, Celest. Mech. Dyn. Astr., 2011, vol. 111, pp. 219–233.

    ADS  Article  MATH  MathSciNet  Google Scholar 

  13. Bauer, J.M., Buratti, B.J., Simonelli, D.P., and Owen, W.M., Jr., Recovering the rotational light curve of Phoebe, Astrophys. J., 2004, vol. 610, pp. L57–L60.

    ADS  Article  Google Scholar 

  14. von Bremen, H.F., Udwadia, F.E., and Proskurowski, W., An efficient QR based method for the computation of Lyapunov exponents, Physica D, 1997, vol. 101, pp. 1–16.

    ADS  Article  MATH  MathSciNet  Google Scholar 

  15. Castillo-Rogez, J.C., Efroimsky, M., and Lainey, V., The tidal history of Iapetus: spin dynamics in the light of a refined dissipation model, J. Geophys. Res., 2011, vol. 116, no. E9, p. E09008.

    ADS  Google Scholar 

  16. Celletti, A., Froeschlé, C., and Lega, E., Dynamics of the conservative and dissipative spin orbit problem, Planet. Space Sci., 2007, vol. 55, nos. 7–8, pp. 889–899.

    ADS  Article  Google Scholar 

  17. Dobrovolskis, A.R., Spin states and climates of eccentic exoplanets, Icarus, 2007, vol. 192, pp. 1–23.

    ADS  Article  Google Scholar 

  18. Efroimsky, M., Tidal torques: a critical review of some techniques, Celest. Mech. Dyn. Astr, 2009, vol. 104, pp. 257–289.

    ADS  Article  MATH  MathSciNet  Google Scholar 

  19. Goldreich, P. and Peale, S., Spin-orbit coupling in the Solar System, Astron. J., 1966, vol. 71, no. 6, pp. 425–438.

    ADS  Article  Google Scholar 

  20. Grav, T., Holman, M.J., and Kavelaars, J.J., The short rotation period of Nereid, Astrophys. J., 2003, vol. 591, pp. L71–L74.

    ADS  Article  Google Scholar 

  21. Harbison, R.A., Thomas, P.C., and Nicholson, P.C., Rotational modeling of Hyperion, Celest. Mech. Dyn. Astr., 2011, vol. 110, pp. 1–16.

    ADS  Article  MATH  MathSciNet  Google Scholar 

  22. Karasopoulos, H.A., Nonlinear Dynamics of the Planar Attitude Motion for a Gravity-Gradient Satellite, Technical Report Wright Lab. Wright-Patterson AFB, 1994.

    Google Scholar 

  23. Khan, A., Sharma, R., and Saha, L.M., Chaotic motion of an ellipsoidal satellite. I, Astron. J., 1998, vol. 116, no. 4, pp. 2058–2066.

    ADS  Article  Google Scholar 

  24. Kouprianov, V.V. and Shevchenko, I.I., On the chaotic rotation of planetary satellites: the Lyapunov exponents and the energy, Astron. Astrophys., 2003, vol. 410, pp. 749–757.

    ADS  Article  Google Scholar 

  25. Kouprianov, V.V. and Shevchenko, I.I., Rotational dynamics of planetary satellites: a survey of regular and chaotic behavior, Icarus, 2005, vol. 176, pp. 224–234.

    ADS  Article  Google Scholar 

  26. Maris, M., Carraro, G., Cremonese, G., and Fulle, M., Multicolor photometry of the Uranus irregular satellites Sycorax and Caliban, Astron. J., 2001, vol. 121, pp. 2800–2803.

    ADS  Article  Google Scholar 

  27. Maris, M., Carraro, G., and Parisi, M.G., Light curves and colors of the faint Uranian irregular satellites Sycorax, Prospero, Stephano, Setebos, and Trinculo, Astron. Astrophys., 2007, vol. 472, pp. 311–219.

    ADS  Article  Google Scholar 

  28. Melnikov, A.V. and Shevchenko, I.I., On the rotational dynamics of Prometheus and Pandora, Celest. Mech. Dyn. Astron., 2008, vol. 101, nos. 1–2, pp. 31–47.

    ADS  Article  MATH  MathSciNet  Google Scholar 

  29. Melnikov, A.V. and Shevchenko, I.I., The rotation states predominant among the planetary satellites, Icarus, 2010, vol. 209, no. 2, pp. 786–794.

    ADS  Article  Google Scholar 

  30. Peale, S.J., Rotation histories of the natural satellites, in Planetary Satellites, Burns, J.A., Ed., Tucson: Univ. of Arizona Press, 1977, pp. 87–111.

    Google Scholar 

  31. Peale, S.J., Origin and evolution of the natural satellites, Ann. Rev. Astron. Astrophys., 1999, vol. 37, pp. 533–602.

    ADS  Article  Google Scholar 

  32. Porco, C.C., Thomas, P.C., Weiss, J.W., and Richardson, D.C., Saturn’s small inner satellites: clues to their origins, Science, 2007, vol. 318, pp. 1602–1607.

    ADS  Article  Google Scholar 

  33. Seidelmann, P.K., Archinal, B.A., A’Hearn, M.F., et al., Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006, Celest. Mech. Dyn. Astron., 2007, vol. 98, pp. 155–180.

    ADS  Article  MATH  Google Scholar 

  34. Shevchenko, I.I. and Kouprianov, V.V., On the chaotic rotation of planetary satellites: the Lyapunov spectra and the maximum Lyapunov exponents, Astron. Astrophys., 2002, vol. 394, pp. 663–674.

    ADS  Article  MATH  Google Scholar 

  35. Thomas, P.C., Sizes, shapes, and derived properties of the Saturnian satellites after the Cassini nominal mission, Icarus, 2010, vol. 208, pp. 395–401.

    ADS  Article  Google Scholar 

  36. Thomas, P.C., Burns, J.A., Helfenstein, P., et al., Shapes of the Saturnian icy satellites and their significance, Icarus, 2007, vol. 190, pp. 573–584.

    ADS  Article  Google Scholar 

  37. Wisdom, J., Rotational dynamics of irregularly shaped natural satellites, Astron. J., 1987, vol. 94, pp. 1350–1360.

    ADS  Article  Google Scholar 

  38. Wisdom, J., Peale, S.J., and Mignard, F., The chaotic rotation of Hyperion, Icarus, 1984, vol. 58, pp. 137–152.

    ADS  Article  Google Scholar 

  39. NASA website data, http://solarsystem.nasa.gov/planets/

  40. JPL website data, http://ssd.jpl.nasa.gov/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Melnikov.

Additional information

Original Russian Text © A.V. Melnikov, 2014, published in Kosmicheskie Issledovaniya, 2014, Vol. 52, No. 6, pp. 500–511.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melnikov, A.V. Conditions for appearance of strange attractors in rotational dynamics of small planetary satellites. Cosmic Res 52, 461–471 (2014). https://doi.org/10.1134/S0010952514060045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952514060045

Keywords

  • Lyapunov Exponent
  • Chaotic Motion
  • Cosmic Research
  • Strange Attractor
  • Rotational Dynamic